Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonat...Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonate coupled with silane grafted polypropylene (PP-g-Si) were made, their mechanical properties and thermal properties were investigated, respectively. Results As compared with the non-coupled composites, the mechanical properties of PP/Ta/PP-g-Si composites were improved to some extent, though the values of tensile modulus and the strain at peak were decreased. But for PP/BaSO4 and PP/CaCO3 composites, the values of their mechanical properties varied slightly or even decreased with increasing PP-g-Si content within the experimental component. Meanwhile, PP-g-Si also affected the melting and crystallization behavior of PP in the composites. Conclusion PP-g-Si offers compatibilization in PP/Ta composites, but offers no-compatibilization in PP/BaSO4 and PP/CaCO3 composites within the extent of the present range of PP-g-Si, which shows that PP-g-Si can be used as the macromolecular coupling agent of PP and Ta composite.展开更多
Microcapsulated chlorocyclophosphazenes were synthesized,and then microcapsulated chlorocyclo- phosphazene/polypropylene(PP)composites were prepared.The results showed that microcapsulated chlorocyclo- phosphazene had...Microcapsulated chlorocyclophosphazenes were synthesized,and then microcapsulated chlorocyclo- phosphazene/polypropylene(PP)composites were prepared.The results showed that microcapsulated chlorocyclo- phosphazene had good high thermal stability through thermogravimetric analysis(TGA).The flammability and mechanical properties of microcapsulated chlorocyclophosphazene/polypropylene composites were investigated by limiting oxygen index experiment,UL 94V flame retardancy test,cone calorimetry,tensile experiment,and impact test,respectively.It was shown that the microcapsulated chlorocyclophosphazene/PP composites had better tensile strength,impact strength,flame retardant properties and smoke suppress properties compared with chlorocyclo- phosphazene/PP composites.展开更多
Aluminate-based coupling agent was added as a compatibilizer to make the chemical modification of wood powder. The mechanical properties and morphology of wood powder/polypropylene composites were studied. The results...Aluminate-based coupling agent was added as a compatibilizer to make the chemical modification of wood powder. The mechanical properties and morphology of wood powder/polypropylene composites were studied. The results showed that the compatibilizer can increase the impact strength of the wood/polypropylene composites, but it has a slightly negative effect on the tensile and flexural strength. For dynamic mechanical properties and Differential Scanning Calorimetry, Aluminate-based coupling agent can slightly increase the storage modulus and loss modulus, and decrease the melt point and the Calorie of Melt. Scanning electron microscopy showed that Aluminate-based coupling agent had a stronger affinity between the wood and polypropylene surfaces. These results suggested that Aluminate-based coupling agent may play a useful role in improving wood powder/polypropylene composites properties.展开更多
Majority of superabsorbent polymers (SAPs) yet reported either have low gel strength or high production cost. Therefore, we synthesized a novel polyacrylic acid-grafted China clay (Kaolinite) super-absorbent polymer c...Majority of superabsorbent polymers (SAPs) yet reported either have low gel strength or high production cost. Therefore, we synthesized a novel polyacrylic acid-grafted China clay (Kaolinite) super-absorbent polymer composite (SAPC) with high thermal stability, low cost of production and superior sorption and retention capability for water and salt solution. The resulting SAPCs were extensively characterized and analysed by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results suggested that the composites were thermally stable. Water absorbency increased with increase of clay content up to 45%, while further increase in clay content decreased the water absorbency. Percentage of acrylic acid (AA) and clay by weight shows the optimum absorbency in 35% and 40% respectively. Crosslinker and initiator contents were optimized to be 0.5% and 0.3% by weight respectively. The resulting polymer composite showed high water absorbency of about 785 g/g and 103 g/g of 1% NaCl solution with above 90% retention ability at 50 oC.展开更多
Aluminium trihydrate(ATH) is being extensively added to polypropylene(PP) to make a fire retardant composite. Blends of PP/ATH composite are more fire resistant as compared to pure PP. Percentage proportion of both th...Aluminium trihydrate(ATH) is being extensively added to polypropylene(PP) to make a fire retardant composite. Blends of PP/ATH composite are more fire resistant as compared to pure PP. Percentage proportion of both the constituents in the final composite depends upon the application. Improvement in the fire retardant properties of such composites have been studied and published in literature but effects on mechanical strength have not been addressed. The effect of concentration of ATH on the strength of PP/ATH composite was presented. The tensile, flexural and fracture properties were studied and discussed. Experimental tests, ASTM analytical formulae and finite element approach were used. It has been found that increase in ATH has an inverse effect on the mechanical strength.展开更多
The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed. A theoretical model of the combined conductive, convective and radiative heat flow through fibrous ...The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed. A theoretical model of the combined conductive, convective and radiative heat flow through fibrous insulating material was presented. Detail study was carried out by using the finite element method. The theoretical results are in accordance to the experimental results which were accomplished in an artificial climate chamber.展开更多
Polypropylene fibers have been extensively used in a variety of/products, including carpets and upholstery, due to their non-absorbency, good weather resistance, good resistance to macroorgamsms and so on. Because of ...Polypropylene fibers have been extensively used in a variety of/products, including carpets and upholstery, due to their non-absorbency, good weather resistance, good resistance to macroorgamsms and so on. Because of their hydrophobic and highly crystalline nature, those well-established conventionai dyeing processes are difficult to apply to unmodified polypropylene. Colors of polypropylene fibers are primarily obtained by mass coloration which has the disadvantages of limited number of colors available and difficulties in inventory control due to the rapidly changing color needs of the market. In this paper, the use of vat dyes to dye polypropylene fabrics is investigated. Seventeen vat dyes were screened and factors influencing uptake of dyes by polypropylene fabrics were studied.展开更多
MA-SEBS as compatibilizer and impact modifier was incorporated into Polypropylene/Wood Fiber (PP/WF) to enhance interface adhesion and impact strength of the composite. The effect of MA-SEBS content on the impact fr...MA-SEBS as compatibilizer and impact modifier was incorporated into Polypropylene/Wood Fiber (PP/WF) to enhance interface adhesion and impact strength of the composite. The effect of MA-SEBS content on the impact fracture behavior of PP/WF composites was studied. The impact properties of composites with 8% MA-SEBS reached the maximum value. And further increasing of MA-SEBS content to 10% did not improve the fracture toughness, but improved the stiffness of composites by DMA analysis. This was attributed to the improved PP/WF adhesion. As the MA-SEBS content is more than 8%, the molecule interaction of PP and WF was expected to much stronger than lower MA-SEBS. Scanning electron microscopy (SEM) was performed to analyze the impact fracture surface and showed a stronger affinity for the wood surfaces.展开更多
A new knitted composite artificial tracheal stent made of polyglactin(PGLA) and polypropylene (PP) filaments for reinforcement and regeneration of human trachea has been developed by plated-knitting technique on a sma...A new knitted composite artificial tracheal stent made of polyglactin(PGLA) and polypropylene (PP) filaments for reinforcement and regeneration of human trachea has been developed by plated-knitting technique on a small-diameter circular knitting machine.Both tensile and compressive tests were carried out to determine the Young's modulus and the critical pressure corresponding to crushing of the stent.The experimental results confirmed that the new type of knitted composite artificial stent is mechanically feasible.展开更多
Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoiniti...Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoinitiator,SA/PMMA microcapsules were prepared and various techniques were employed to determine the ignition mechanism,structural characteristics and thermal properties of the composite.The results shown that the microcapsules containing SA with maximum percentage of 52.20 wt% formed by radical mechanism and only physical interactions existed in the components both in the prepared process and subsequent use.The phase change temperatures and latent heats of the microencapsulated SA were measured as 55.3 °C and 102.1 J·g^(-1) for melting,and 48.8 °C and 102.8 J·g^(-1) for freezing,respectively.Thermal gravimetric analysis revealed that SA/PMMA has good thermal durability in working temperature range.The results of accelerated thermal cycling test are all shown that the SA/PMMA have excellent thermal reliability and chemical stability although they were subjected 1000 melting/freezing cycles.In summary,the comparable thermal storage ability and good thermal reliability facilitated SA/PMMA to be considered as a viable candidate for thermal energy storage.The successful fabrication of SA/PMMA capsules indicates that ferric chloride is a prominent candidate for synthesizing PMMA containing PCM composite.展开更多
Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal si...Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMAcopolymer/silica nanocomposltes snoweO mat me caroon ylelCl or copolymer was slgnuy oecreaseo as Silica parucle incorporated. N2 adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and展开更多
PANCHI (poly(acrylonitrile)/chitosan) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the por...PANCHI (poly(acrylonitrile)/chitosan) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of poly(acrylonitrile) and PANCHI membranes were determined by SEM analyses It was found that the membrane coated with 1.0% chitosan shows the maximum reduced pore size. The amounts of the functional groups and the degree of hydrophilicity of PANCHI composite membranes were determined. Urease was covalently immobilized onto all kinds of PANCHI membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (92.96%) was measured for urease bound to PANCHI (1%) membranes. The basic characteristics of optimum conditions (pH and temperature), heat inactivation and storage stability of immobilized urease were determined. Immobilization improved the thermal, pH and storage stability of the enzyme. The obtained results show that the poly(acrylonitrile)/chitosan composite materials are suitable for urease immobilization.展开更多
Poly (methyl methacrylate) is widely used as denture base material. During fabrication of a denture, the physical and mechanical properties are influenced by cure condition. Each cure cycle or fabrication technique ...Poly (methyl methacrylate) is widely used as denture base material. During fabrication of a denture, the physical and mechanical properties are influenced by cure condition. Each cure cycle or fabrication technique is attempts to optimize the properties for a given application. The aim of this study was to compare two types of commercially available denture base materials (heat-cure and self-cure) in their mechanical properties. The samples were prepared according to the daily routine work for sample preparation in dental laboratories. After reaching dough stage the mix packed into dumbbell shaped of stainless steel mould and pressed in a hydraulic bench press for 25 mins at room temperature. For heat cure the polymerization cycle was carried out using water bath, while self cure was done at room temperature. The impact strength was evaluated using Charpy impact test. The hardness test was conducted using a calibrated Vickers hardness tester machine. The lowest impact strength was observed in self-cure denture base material (self cure material 6.2 kJ/m^2 while heat cure 12.69 kJ/m^2. It appears that the tendency of heat cure to fracture was lower than self-cure denture base materials. Heat cure denture base material has significantly higher hardness test values than self-cure denture base material. The observed VHN value of the heat-cure was 20.09 g/mm^2 while the self-cure value was 12.7 g/mm^2. This is may be due to the plasticizer effect of residual monomer which was higher in self curing material as reported in previous work. Generally, the heat cure material showed better properties compared to self cure material.展开更多
Dragonfly hindwing inspired two different flapping wing morphologies are investigated for flexible flapping wing micro air vehicles(FWMAV)applications.The wing skin is developed using 1%functionalized carbon nanotubes...Dragonfly hindwing inspired two different flapping wing morphologies are investigated for flexible flapping wing micro air vehicles(FWMAV)applications.The wing skin is developed using 1%functionalized carbon nanotubes reinforced polypropylene nanocomposites with carbon fiber epoxy composite strands as venation pattern.The resonance frequencies are the fundamental information for biomimicking and were calculated theoretically from stiffness data.Bending dominated first natural frequency was obtained from flexural stiffness data and found close to the flapping frequency of natural dragonfly hindwing.Twisting dominated second natural frequency was obtained from torsional stiffness,which revealed that the artificial wings can be fabricated thinner.The flapping frequency of artificial wings is unaffected by the twisting deformation.The bending and twisting dominated mode shapes are also studied using the digital image correlation(DIC)system.To verify the static and dynamic results,finite element simulations are performed that agree with experimental findings.It was found that the proposed flexible nanocomposite wing skin can control the bending and twisting dominated frequencies by tailoring the wing morphology without affecting the mode shapes of deformation.展开更多
Transfer printing of nanomaterials onto target substrates has been widely used in the fabrication of nanodevices, but it remains a challenge to fully avoid contamination introduced in the transfer process. Here we rep...Transfer printing of nanomaterials onto target substrates has been widely used in the fabrication of nanodevices, but it remains a challenge to fully avoid contamination introduced in the transfer process. Here we report a metal-film- assisted method to realize an ultra-clean transfer of single-walled carbon nanotubes (SWCNTs) mediated by poly(methyl methacrylate) (PMMA). The amount of PMMA residue can be greatly reduced due to its strong physical adhesion to the metal film, leading to ultra-clean surfaces of both the SWCNTs and the substrates. This metal-film-assisted transfer method is efficient, nondestructive, and scalable. It is also suitable for the transfer of graphene and other nanostructures. Furthermore, the relatively low temperature employed allows this technique to be compatible with nanomaterial-based flexible electronics.展开更多
MoO_2@N-doped C nanofibers(MoO_2@NC NFs)were synthesized by electrospinning with polyacrylonitrile as carbon source.The in situ formed MoO_2nanocrystals are completely embedded in the carbon nanofibers,which can not...MoO_2@N-doped C nanofibers(MoO_2@NC NFs)were synthesized by electrospinning with polyacrylonitrile as carbon source.The in situ formed MoO_2nanocrystals are completely embedded in the carbon nanofibers,which can not only accelerate ion transition,but also act as a buffer to avoid the mechanical degradation of active material due to the volume changes during charge/discharge cycling.When used as the anode material for both Li/Na-ion batteries,the as-synthesized MoO_2@NC NFs displayed excellent Li~+/Na~+storage properties.As the anode for Li-ion battery,the MoO_2@NC NFs display a high discharge capacity of 930 mA h g^(-1)at a current density of 200 mA g^(-1)for 100 cycles,and 720 mA h g^(-1)at a current density of 1 A g^(-1)for 600 cycles.Moreover,the discharge capacity of 350 mA h g^(-1)could be realized at a current density of 100 mA g^(-1)for 200 cycles for Na-ion battery.展开更多
文摘Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonate coupled with silane grafted polypropylene (PP-g-Si) were made, their mechanical properties and thermal properties were investigated, respectively. Results As compared with the non-coupled composites, the mechanical properties of PP/Ta/PP-g-Si composites were improved to some extent, though the values of tensile modulus and the strain at peak were decreased. But for PP/BaSO4 and PP/CaCO3 composites, the values of their mechanical properties varied slightly or even decreased with increasing PP-g-Si content within the experimental component. Meanwhile, PP-g-Si also affected the melting and crystallization behavior of PP in the composites. Conclusion PP-g-Si offers compatibilization in PP/Ta composites, but offers no-compatibilization in PP/BaSO4 and PP/CaCO3 composites within the extent of the present range of PP-g-Si, which shows that PP-g-Si can be used as the macromolecular coupling agent of PP and Ta composite.
基金Supported by the National Natural Science Foundation of China (No.50303005), the Natural Science Foundation of Shanxi Province (No.20041029) and the Project of Science and Technology of Shanxi Province (No.012078).
文摘Microcapsulated chlorocyclophosphazenes were synthesized,and then microcapsulated chlorocyclo- phosphazene/polypropylene(PP)composites were prepared.The results showed that microcapsulated chlorocyclo- phosphazene had good high thermal stability through thermogravimetric analysis(TGA).The flammability and mechanical properties of microcapsulated chlorocyclophosphazene/polypropylene composites were investigated by limiting oxygen index experiment,UL 94V flame retardancy test,cone calorimetry,tensile experiment,and impact test,respectively.It was shown that the microcapsulated chlorocyclophosphazene/PP composites had better tensile strength,impact strength,flame retardant properties and smoke suppress properties compared with chlorocyclo- phosphazene/PP composites.
基金This study was supported by Introduce Foreign Advanced Technology Project (2001-1).
文摘Aluminate-based coupling agent was added as a compatibilizer to make the chemical modification of wood powder. The mechanical properties and morphology of wood powder/polypropylene composites were studied. The results showed that the compatibilizer can increase the impact strength of the wood/polypropylene composites, but it has a slightly negative effect on the tensile and flexural strength. For dynamic mechanical properties and Differential Scanning Calorimetry, Aluminate-based coupling agent can slightly increase the storage modulus and loss modulus, and decrease the melt point and the Calorie of Melt. Scanning electron microscopy showed that Aluminate-based coupling agent had a stronger affinity between the wood and polypropylene surfaces. These results suggested that Aluminate-based coupling agent may play a useful role in improving wood powder/polypropylene composites properties.
文摘Majority of superabsorbent polymers (SAPs) yet reported either have low gel strength or high production cost. Therefore, we synthesized a novel polyacrylic acid-grafted China clay (Kaolinite) super-absorbent polymer composite (SAPC) with high thermal stability, low cost of production and superior sorption and retention capability for water and salt solution. The resulting SAPCs were extensively characterized and analysed by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results suggested that the composites were thermally stable. Water absorbency increased with increase of clay content up to 45%, while further increase in clay content decreased the water absorbency. Percentage of acrylic acid (AA) and clay by weight shows the optimum absorbency in 35% and 40% respectively. Crosslinker and initiator contents were optimized to be 0.5% and 0.3% by weight respectively. The resulting polymer composite showed high water absorbency of about 785 g/g and 103 g/g of 1% NaCl solution with above 90% retention ability at 50 oC.
基金Projects(2012-00094552012-0008302) supported by the National Research Foundation of Korea(NRF) Grant Funded by the Korea Government(MEST)
文摘Aluminium trihydrate(ATH) is being extensively added to polypropylene(PP) to make a fire retardant composite. Blends of PP/ATH composite are more fire resistant as compared to pure PP. Percentage proportion of both the constituents in the final composite depends upon the application. Improvement in the fire retardant properties of such composites have been studied and published in literature but effects on mechanical strength have not been addressed. The effect of concentration of ATH on the strength of PP/ATH composite was presented. The tensile, flexural and fracture properties were studied and discussed. Experimental tests, ASTM analytical formulae and finite element approach were used. It has been found that increase in ATH has an inverse effect on the mechanical strength.
文摘The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed. A theoretical model of the combined conductive, convective and radiative heat flow through fibrous insulating material was presented. Detail study was carried out by using the finite element method. The theoretical results are in accordance to the experimental results which were accomplished in an artificial climate chamber.
基金Supported by Consortiumon Competitiveness for the Apparel , Carpet ,and Textile Industries (CCACTI)
文摘Polypropylene fibers have been extensively used in a variety of/products, including carpets and upholstery, due to their non-absorbency, good weather resistance, good resistance to macroorgamsms and so on. Because of their hydrophobic and highly crystalline nature, those well-established conventionai dyeing processes are difficult to apply to unmodified polypropylene. Colors of polypropylene fibers are primarily obtained by mass coloration which has the disadvantages of limited number of colors available and difficulties in inventory control due to the rapidly changing color needs of the market. In this paper, the use of vat dyes to dye polypropylene fabrics is investigated. Seventeen vat dyes were screened and factors influencing uptake of dyes by polypropylene fabrics were studied.
基金This paper was supported by National 863 Program (2002AA245141)national Foundation of Application of Agricul-tural Scientific and Technological Achievements (2006GB23600450)
文摘MA-SEBS as compatibilizer and impact modifier was incorporated into Polypropylene/Wood Fiber (PP/WF) to enhance interface adhesion and impact strength of the composite. The effect of MA-SEBS content on the impact fracture behavior of PP/WF composites was studied. The impact properties of composites with 8% MA-SEBS reached the maximum value. And further increasing of MA-SEBS content to 10% did not improve the fracture toughness, but improved the stiffness of composites by DMA analysis. This was attributed to the improved PP/WF adhesion. As the MA-SEBS content is more than 8%, the molecule interaction of PP and WF was expected to much stronger than lower MA-SEBS. Scanning electron microscopy (SEM) was performed to analyze the impact fracture surface and showed a stronger affinity for the wood surfaces.
文摘A new knitted composite artificial tracheal stent made of polyglactin(PGLA) and polypropylene (PP) filaments for reinforcement and regeneration of human trachea has been developed by plated-knitting technique on a small-diameter circular knitting machine.Both tensile and compressive tests were carried out to determine the Young's modulus and the critical pressure corresponding to crushing of the stent.The experimental results confirmed that the new type of knitted composite artificial stent is mechanically feasible.
基金Supported by the National Natural Science Foundation of China(51562023)the Natural Science Foundation of Gansu Provence(145RJZA185)the National science and technology support project(2014BAA01B01)
文摘Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoinitiator,SA/PMMA microcapsules were prepared and various techniques were employed to determine the ignition mechanism,structural characteristics and thermal properties of the composite.The results shown that the microcapsules containing SA with maximum percentage of 52.20 wt% formed by radical mechanism and only physical interactions existed in the components both in the prepared process and subsequent use.The phase change temperatures and latent heats of the microencapsulated SA were measured as 55.3 °C and 102.1 J·g^(-1) for melting,and 48.8 °C and 102.8 J·g^(-1) for freezing,respectively.Thermal gravimetric analysis revealed that SA/PMMA has good thermal durability in working temperature range.The results of accelerated thermal cycling test are all shown that the SA/PMMA have excellent thermal reliability and chemical stability although they were subjected 1000 melting/freezing cycles.In summary,the comparable thermal storage ability and good thermal reliability facilitated SA/PMMA to be considered as a viable candidate for thermal energy storage.The successful fabrication of SA/PMMA capsules indicates that ferric chloride is a prominent candidate for synthesizing PMMA containing PCM composite.
基金Supported by the Program for New Century Excellent Talents in University (NCET-07-0738)
文摘Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMAcopolymer/silica nanocomposltes snoweO mat me caroon ylelCl or copolymer was slgnuy oecreaseo as Silica parucle incorporated. N2 adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and
文摘PANCHI (poly(acrylonitrile)/chitosan) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of poly(acrylonitrile) and PANCHI membranes were determined by SEM analyses It was found that the membrane coated with 1.0% chitosan shows the maximum reduced pore size. The amounts of the functional groups and the degree of hydrophilicity of PANCHI composite membranes were determined. Urease was covalently immobilized onto all kinds of PANCHI membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (92.96%) was measured for urease bound to PANCHI (1%) membranes. The basic characteristics of optimum conditions (pH and temperature), heat inactivation and storage stability of immobilized urease were determined. Immobilization improved the thermal, pH and storage stability of the enzyme. The obtained results show that the poly(acrylonitrile)/chitosan composite materials are suitable for urease immobilization.
文摘Poly (methyl methacrylate) is widely used as denture base material. During fabrication of a denture, the physical and mechanical properties are influenced by cure condition. Each cure cycle or fabrication technique is attempts to optimize the properties for a given application. The aim of this study was to compare two types of commercially available denture base materials (heat-cure and self-cure) in their mechanical properties. The samples were prepared according to the daily routine work for sample preparation in dental laboratories. After reaching dough stage the mix packed into dumbbell shaped of stainless steel mould and pressed in a hydraulic bench press for 25 mins at room temperature. For heat cure the polymerization cycle was carried out using water bath, while self cure was done at room temperature. The impact strength was evaluated using Charpy impact test. The hardness test was conducted using a calibrated Vickers hardness tester machine. The lowest impact strength was observed in self-cure denture base material (self cure material 6.2 kJ/m^2 while heat cure 12.69 kJ/m^2. It appears that the tendency of heat cure to fracture was lower than self-cure denture base materials. Heat cure denture base material has significantly higher hardness test values than self-cure denture base material. The observed VHN value of the heat-cure was 20.09 g/mm^2 while the self-cure value was 12.7 g/mm^2. This is may be due to the plasticizer effect of residual monomer which was higher in self curing material as reported in previous work. Generally, the heat cure material showed better properties compared to self cure material.
文摘Dragonfly hindwing inspired two different flapping wing morphologies are investigated for flexible flapping wing micro air vehicles(FWMAV)applications.The wing skin is developed using 1%functionalized carbon nanotubes reinforced polypropylene nanocomposites with carbon fiber epoxy composite strands as venation pattern.The resonance frequencies are the fundamental information for biomimicking and were calculated theoretically from stiffness data.Bending dominated first natural frequency was obtained from flexural stiffness data and found close to the flapping frequency of natural dragonfly hindwing.Twisting dominated second natural frequency was obtained from torsional stiffness,which revealed that the artificial wings can be fabricated thinner.The flapping frequency of artificial wings is unaffected by the twisting deformation.The bending and twisting dominated mode shapes are also studied using the digital image correlation(DIC)system.To verify the static and dynamic results,finite element simulations are performed that agree with experimental findings.It was found that the proposed flexible nanocomposite wing skin can control the bending and twisting dominated frequencies by tailoring the wing morphology without affecting the mode shapes of deformation.
文摘Transfer printing of nanomaterials onto target substrates has been widely used in the fabrication of nanodevices, but it remains a challenge to fully avoid contamination introduced in the transfer process. Here we report a metal-film- assisted method to realize an ultra-clean transfer of single-walled carbon nanotubes (SWCNTs) mediated by poly(methyl methacrylate) (PMMA). The amount of PMMA residue can be greatly reduced due to its strong physical adhesion to the metal film, leading to ultra-clean surfaces of both the SWCNTs and the substrates. This metal-film-assisted transfer method is efficient, nondestructive, and scalable. It is also suitable for the transfer of graphene and other nanostructures. Furthermore, the relatively low temperature employed allows this technique to be compatible with nanomaterial-based flexible electronics.
基金supported by the National Natural Science Foundation of China (51302079)
文摘MoO_2@N-doped C nanofibers(MoO_2@NC NFs)were synthesized by electrospinning with polyacrylonitrile as carbon source.The in situ formed MoO_2nanocrystals are completely embedded in the carbon nanofibers,which can not only accelerate ion transition,but also act as a buffer to avoid the mechanical degradation of active material due to the volume changes during charge/discharge cycling.When used as the anode material for both Li/Na-ion batteries,the as-synthesized MoO_2@NC NFs displayed excellent Li~+/Na~+storage properties.As the anode for Li-ion battery,the MoO_2@NC NFs display a high discharge capacity of 930 mA h g^(-1)at a current density of 200 mA g^(-1)for 100 cycles,and 720 mA h g^(-1)at a current density of 1 A g^(-1)for 600 cycles.Moreover,the discharge capacity of 350 mA h g^(-1)could be realized at a current density of 100 mA g^(-1)for 200 cycles for Na-ion battery.