背景:聚甲基丙烯酸-2-羟乙酯载药生物材料既有优异的生物学功能,又能释放药物,是一种潜在的组织工程支架材料和缓、控释药物载体材料。目的:观察布洛芬-聚甲基丙烯酸-2-羟乙酯水凝胶膜表面形态、吸水膨胀性能及缓控释性能。设计、时间...背景:聚甲基丙烯酸-2-羟乙酯载药生物材料既有优异的生物学功能,又能释放药物,是一种潜在的组织工程支架材料和缓、控释药物载体材料。目的:观察布洛芬-聚甲基丙烯酸-2-羟乙酯水凝胶膜表面形态、吸水膨胀性能及缓控释性能。设计、时间及地点:体外观察实验,于2008-01/05在福建医科大学药学院药学综合实验室完成。材料:甲基丙烯酸-2-羟乙酯为Aldrich Chemical Company产品;布洛芬为山东新华制药股份有限公司产品;过硫酸铵为广东省化学试剂工程技术研究开发中心产品;N-N’-亚甲基双丙烯酰胺为苏州市化工研究所有限公司产品。方法:选甲基丙烯酸-2-羟乙酯为单体、过硫酸铵为引发剂、N-N’-亚甲基双丙烯酰胺为交联剂、布洛芬为模型药物水相聚合,通过分步法和同步法导入药物。主要观察指标:光学显微镜和扫描电镜观察凝胶膜的表面形态;水溶液法测定凝胶膜的膨胀性能,拟体液环境中测定凝胶膜的释药特征。结果:含有N-N’-亚甲基双丙烯酰胺的水凝胶膜表面褶皱和沟痕更少,整体面光滑。随着交联剂加入量增加,吸水溶胀度减小,水凝胶膜形成体型结构的趋势增大。不论是同步法还是分步法所制的载药水凝胶膜,其释药达到平台的时间都比未加入交联剂的凝胶膜要长,但同时也发现在交联剂加入后,膜的载药量在减少,综合各因素以N-N’-亚甲基双丙烯酰胺含量7.5g/L为较佳方案。结论:水凝胶膜表面形态理想,导入药物后的载药膜具有良好的膨胀性能和更优秀的缓、控释特征。展开更多
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)作引发剂引发交联聚乙烯醇(PVA)-戊二醛(GA)制备水凝胶聚合物电解质并组装成超级电容器.分别由红外光谱、交流阻抗、循环伏安与恒电流充放电测定该凝胶聚合物电解质及超级电容器的电化学性能.结果表明...以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)作引发剂引发交联聚乙烯醇(PVA)-戊二醛(GA)制备水凝胶聚合物电解质并组装成超级电容器.分别由红外光谱、交流阻抗、循环伏安与恒电流充放电测定该凝胶聚合物电解质及超级电容器的电化学性能.结果表明,该聚合物电解质电导率可达1.23 mS/cm(室温).而且,以1.0 gAMPS引发0.05 mL GA(5%)与1.0 g PVA交联,制得的凝胶聚合物电解质超级电容器比电容可达139 F/g,50次充放电后其值仍在80%以上.展开更多
文摘背景:聚甲基丙烯酸-2-羟乙酯载药生物材料既有优异的生物学功能,又能释放药物,是一种潜在的组织工程支架材料和缓、控释药物载体材料。目的:观察布洛芬-聚甲基丙烯酸-2-羟乙酯水凝胶膜表面形态、吸水膨胀性能及缓控释性能。设计、时间及地点:体外观察实验,于2008-01/05在福建医科大学药学院药学综合实验室完成。材料:甲基丙烯酸-2-羟乙酯为Aldrich Chemical Company产品;布洛芬为山东新华制药股份有限公司产品;过硫酸铵为广东省化学试剂工程技术研究开发中心产品;N-N’-亚甲基双丙烯酰胺为苏州市化工研究所有限公司产品。方法:选甲基丙烯酸-2-羟乙酯为单体、过硫酸铵为引发剂、N-N’-亚甲基双丙烯酰胺为交联剂、布洛芬为模型药物水相聚合,通过分步法和同步法导入药物。主要观察指标:光学显微镜和扫描电镜观察凝胶膜的表面形态;水溶液法测定凝胶膜的膨胀性能,拟体液环境中测定凝胶膜的释药特征。结果:含有N-N’-亚甲基双丙烯酰胺的水凝胶膜表面褶皱和沟痕更少,整体面光滑。随着交联剂加入量增加,吸水溶胀度减小,水凝胶膜形成体型结构的趋势增大。不论是同步法还是分步法所制的载药水凝胶膜,其释药达到平台的时间都比未加入交联剂的凝胶膜要长,但同时也发现在交联剂加入后,膜的载药量在减少,综合各因素以N-N’-亚甲基双丙烯酰胺含量7.5g/L为较佳方案。结论:水凝胶膜表面形态理想,导入药物后的载药膜具有良好的膨胀性能和更优秀的缓、控释特征。
文摘以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)作引发剂引发交联聚乙烯醇(PVA)-戊二醛(GA)制备水凝胶聚合物电解质并组装成超级电容器.分别由红外光谱、交流阻抗、循环伏安与恒电流充放电测定该凝胶聚合物电解质及超级电容器的电化学性能.结果表明,该聚合物电解质电导率可达1.23 mS/cm(室温).而且,以1.0 gAMPS引发0.05 mL GA(5%)与1.0 g PVA交联,制得的凝胶聚合物电解质超级电容器比电容可达139 F/g,50次充放电后其值仍在80%以上.