Aim PLA/PLGA was used as biodegradable and biocompatible carriers to achieve sustained release of estradiol (E 2). Methods Microcapsules (MC) were prepared by an emulsification solvent extraction method, and then ...Aim PLA/PLGA was used as biodegradable and biocompatible carriers to achieve sustained release of estradiol (E 2). Methods Microcapsules (MC) were prepared by an emulsification solvent extraction method, and then the properties and in vitro drug release behavior of MC were examined. An analysis of variance (ANOVA) was used to test the statistical significance. Then, multiple comparisons were made with a T method between levels to examine the significance of difference further. For all the results a P value 】0 05 was considered statistically insignificant . Results Under the same conditions, the water adding speed and the particle size had significant effects ( P 【0 01) on the entrapment efficiency of MC; the water adding speed and the concentration of PLA in the oil phase had significant effects ( P 【0 01) on the diameter MC in medium. Release of E 2 from MC was influenced significantly ( P 【0 01) by the water adding speed and the type and molecule weight of the polymers. But the differences between levels of the variates were not all significant. Conclusion E 2 PLA/PLGA MC with various properties can be formed when the formulation and the technology were changed accordingly.展开更多
A two steps direct copolymerisation process was developed. The first step is to produce oligomer and then the oligomer of lactic acid/glycolic acid (90/10) is polymerized with binary catalyst tin chloride dihydrate/p-...A two steps direct copolymerisation process was developed. The first step is to produce oligomer and then the oligomer of lactic acid/glycolic acid (90/10) is polymerized with binary catalyst tin chloride dihydrate/p-toluenesulfonic acid. In this way, the direct synthesis of copoly (lactic acid/glycolic acid) without any organic solvent was investigated. The properties and structures of products were characterized by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), X-ray diffraction and so on. The results show that comparatively high molecular weight copolymer of lactic acid and glycolic acid can be prepared by direct processing under appropriate technological conditions.展开更多
Aim Polylactic acid (PLA) or polylactide-co-glycolide (PLGA) was used asbiodegradable and biocom-patible carriers to achieve sustained release ofestradial-PLGA/PLA-Microspheres (E_2-PLGA/PLA-MS). THF was added in the ...Aim Polylactic acid (PLA) or polylactide-co-glycolide (PLGA) was used asbiodegradable and biocom-patible carriers to achieve sustained release ofestradial-PLGA/PLA-Microspheres (E_2-PLGA/PLA-MS). THF was added in the organic phase to study itseffects on the properties of MS. Methods MS were formed by an emulsification-solvent extractionmethod with mixture of ethyl acetate (EtoAc) and tetrahydrofuran (THF) as the organic solvents, andthen the properties and in vitro drug release behavior were examined. Results The results indicatedthat the drug loading efficiency decreased when THF added, but when the ratio of EtoAc was more than50% , there was no obvious effect of THF ratio, but the particle size increased accordingly. Thecarriers' properties and the drug contents were the main factors influencing the in vitro drugrelease. Conclusions By controlling the technology and formulation, we can get sustained-release E_2biodegradable microsperes with proper particle size, drug content and low burst-release, althoughTHF with readily solubility in water was used in the organic phase.展开更多
Nanoparticles with typical core-shell structure were prepared with a blend of methoxypoly(ethylene glycol)-poly(lactide) copolymer (MPEG-PLA) and poly (lactic acid) (PLA) along with paclitaxel by the O/W sol...Nanoparticles with typical core-shell structure were prepared with a blend of methoxypoly(ethylene glycol)-poly(lactide) copolymer (MPEG-PLA) and poly (lactic acid) (PLA) along with paclitaxel by the O/W solvent evaporation method. An orthogonal experiment L9(3)3 was applied to get the best preparation conditions. The core-shell paclitaxel-loaded MPEG-PLA/PLA nanoparticles with the highest drug loading efficiency were obtained when amount of MPEG-PLA, time of ultrasonication and volume of deionized water were 300 mg, 10 rain and 30 mL, respectively. The release behavior of paclitaxel from the optimal MPEG-PLA/PLA nanoparticles showed that 22% ofpaclitaxel was released in 14 d. When incubating with human nasopharyngeal carcinoma ceils expressing LMP 1, these optimal nanoparticles showed a little lower tumor growth compared with free paclitaxel.展开更多
文摘Aim PLA/PLGA was used as biodegradable and biocompatible carriers to achieve sustained release of estradiol (E 2). Methods Microcapsules (MC) were prepared by an emulsification solvent extraction method, and then the properties and in vitro drug release behavior of MC were examined. An analysis of variance (ANOVA) was used to test the statistical significance. Then, multiple comparisons were made with a T method between levels to examine the significance of difference further. For all the results a P value 】0 05 was considered statistically insignificant . Results Under the same conditions, the water adding speed and the particle size had significant effects ( P 【0 01) on the entrapment efficiency of MC; the water adding speed and the concentration of PLA in the oil phase had significant effects ( P 【0 01) on the diameter MC in medium. Release of E 2 from MC was influenced significantly ( P 【0 01) by the water adding speed and the type and molecule weight of the polymers. But the differences between levels of the variates were not all significant. Conclusion E 2 PLA/PLGA MC with various properties can be formed when the formulation and the technology were changed accordingly.
文摘A two steps direct copolymerisation process was developed. The first step is to produce oligomer and then the oligomer of lactic acid/glycolic acid (90/10) is polymerized with binary catalyst tin chloride dihydrate/p-toluenesulfonic acid. In this way, the direct synthesis of copoly (lactic acid/glycolic acid) without any organic solvent was investigated. The properties and structures of products were characterized by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), X-ray diffraction and so on. The results show that comparatively high molecular weight copolymer of lactic acid and glycolic acid can be prepared by direct processing under appropriate technological conditions.
文摘Aim Polylactic acid (PLA) or polylactide-co-glycolide (PLGA) was used asbiodegradable and biocom-patible carriers to achieve sustained release ofestradial-PLGA/PLA-Microspheres (E_2-PLGA/PLA-MS). THF was added in the organic phase to study itseffects on the properties of MS. Methods MS were formed by an emulsification-solvent extractionmethod with mixture of ethyl acetate (EtoAc) and tetrahydrofuran (THF) as the organic solvents, andthen the properties and in vitro drug release behavior were examined. Results The results indicatedthat the drug loading efficiency decreased when THF added, but when the ratio of EtoAc was more than50% , there was no obvious effect of THF ratio, but the particle size increased accordingly. Thecarriers' properties and the drug contents were the main factors influencing the in vitro drugrelease. Conclusions By controlling the technology and formulation, we can get sustained-release E_2biodegradable microsperes with proper particle size, drug content and low burst-release, althoughTHF with readily solubility in water was used in the organic phase.
基金Key Research Foundation of Wannan Medical College(Grant No.WK2014Z06)Doctoral Starting-up Foundation of Wannan Medical College(Grant No.201219)
文摘Nanoparticles with typical core-shell structure were prepared with a blend of methoxypoly(ethylene glycol)-poly(lactide) copolymer (MPEG-PLA) and poly (lactic acid) (PLA) along with paclitaxel by the O/W solvent evaporation method. An orthogonal experiment L9(3)3 was applied to get the best preparation conditions. The core-shell paclitaxel-loaded MPEG-PLA/PLA nanoparticles with the highest drug loading efficiency were obtained when amount of MPEG-PLA, time of ultrasonication and volume of deionized water were 300 mg, 10 rain and 30 mL, respectively. The release behavior of paclitaxel from the optimal MPEG-PLA/PLA nanoparticles showed that 22% ofpaclitaxel was released in 14 d. When incubating with human nasopharyngeal carcinoma ceils expressing LMP 1, these optimal nanoparticles showed a little lower tumor growth compared with free paclitaxel.