Here we report a femtosecond laser direct writing(a precise 3D printing also known as two-photon polymerization lithography) of hybrid organic-inorganic SZ2080^(TM)pre-polymer without using any photo-initiator and app...Here we report a femtosecond laser direct writing(a precise 3D printing also known as two-photon polymerization lithography) of hybrid organic-inorganic SZ2080^(TM)pre-polymer without using any photo-initiator and applying ~100 fs oscillator operating at 517 nm wavelength and 76 MHz repetition rate. The proof of concept was experimentally demonstrated and benchmarking 3D woodpile nanostructures, micro-scaffolds, free-form micro-object “Benchy” and bulk micro-cubes are successfully produced. The essential novelty underlies the fact that non-amplified laser systems delivering just 40-500 p J individual pulses are sufficient for inducing localized cross-linking reactions within hundreds of nanometers in cross sections. And it is opposed to the prejudice that higher pulse energies and lower repetition rates of amplified lasers are necessary for structuring non-photosensitized polymers. The experimental work is of high importance for fundamental understanding of laser enabled nanoscale 3D additive manufacturing and widens technology’ s field of applications where the avoidance of photo-initiator is preferable or is even a necessity, such as micro-optics, nano-photonics, and biomedicine.展开更多
We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages base...We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages based on Bellbasis measurements and classical communication. The present protocol makes use of the ideas of block transmission and decoy particle checking technique. It has a high capacity as each cluster state can carry two 5its of information, and has a high intrinsic efficieney 5ecause almost all the instances except the decoy checking particles (its numSer is negligible) are useful. Furthermore, this protocol is feasible with present-day technique.展开更多
A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t...A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.展开更多
Uneven distribution of minor metals and migration of isotopes in polymeric material (polypropylene) - originating under certain physical and chemical conditions-could possibly affect the stability and bio-compatibil...Uneven distribution of minor metals and migration of isotopes in polymeric material (polypropylene) - originating under certain physical and chemical conditions-could possibly affect the stability and bio-compatibility of such material. Unusually high levels of embedded surface metal isotopes from migration effects could affect studies such as tissue engineering and biospecific adhesion of cells to polymeric surfaces. There is, therefore, a general need to know the distribution of metal isotopes in such polymeric materials. We have developed an ultrasensitive technique for assessing the isotopic distribution in polymer matrices, and studying migration of metal isotopes. The technique uses laser ablation linked to an ICP-MS instrument. It is semi-quantitative and capable of high-resolution detection over a wide range of elemental levels. Polymers usually contain catalytic residues and other minor metal impurities. Some of the isotopes of these metals migrate to the surface, while others remain embedded deep in the polymeric product. Such unwanted metallic residues and isotopes could be a potential hazard, and ablative laser technology has the ability to study homogeneity of such distributions in the polymer matrix. The aim of this paper, therefore, is to explore the potential of our method for studying isotope migration using suitable polypropylene samples.展开更多
Polypropylene fibers have been extensively used in a variety of/products, including carpets and upholstery, due to their non-absorbency, good weather resistance, good resistance to macroorgamsms and so on. Because of ...Polypropylene fibers have been extensively used in a variety of/products, including carpets and upholstery, due to their non-absorbency, good weather resistance, good resistance to macroorgamsms and so on. Because of their hydrophobic and highly crystalline nature, those well-established conventionai dyeing processes are difficult to apply to unmodified polypropylene. Colors of polypropylene fibers are primarily obtained by mass coloration which has the disadvantages of limited number of colors available and difficulties in inventory control due to the rapidly changing color needs of the market. In this paper, the use of vat dyes to dye polypropylene fabrics is investigated. Seventeen vat dyes were screened and factors influencing uptake of dyes by polypropylene fabrics were studied.展开更多
We investigated the interaction between DNA and hexammine cobalt III [Co(NH3)6]3+ by a simple molecular combing method and dynamic light scattering. The average extension of A- DNA-YOYO-1 complex is found to be 20....We investigated the interaction between DNA and hexammine cobalt III [Co(NH3)6]3+ by a simple molecular combing method and dynamic light scattering. The average extension of A- DNA-YOYO-1 complex is found to be 20.9μm, about 30% longer than the contour length of the DNA in TE buffer (10 mmol/L Tris, 1 mmol/L EDTA, pH=8.0), due to bis-intercalation of YOYO-1. A multivalent cation, hexammine cobalt, is used for DNA condensation. We find that the length of DNA-[Co(NH3)6]3+ complexes decrease from 20.9 μm to 5.9μm as the concentration of the [Co(NH3)6]3+ vary from 0 to 3 μmol/L. This observation provides a direct visualization of single DNA condensation induced by hexammine cobalt. The results from the molecular combing studies are supported by dynamic light scattering investigation, where the average hydrodynamic radius of the DNA complex decreases from 203.8 nm to 39.26 nm under the same conditions. It shows that the molecular combing method is feasible for quantitative conformation characterization of single bio-macromolecules.展开更多
CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and else...CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and elsewhere. This paper summarises the findings of a study by the European Academies Science Advisory Council which has examined the current status and development challenges of CSP, and consequently has evaluated the potential contribution of CSP in Europe and the MENA region to 2050. It identifies the actions that will be required by scientists, engineers, policy makers, politicians, business and investors alike, to enable this vast solar resource to make a major contribution to establishing a sustainable energy system. The study concludes that cost reductions of 50%-60% in CSP electricity may reasonably be expected in the next 10-15 years, enabling the technology to be cost competitive with fossil-fired power generation at some point between 2020 and 2030. Incorporation of storage delivers added value in enabling CSP to deliver dispatchable power. Incentive schemes will be needed in Europe and MENA countries to enable this point to be achieved. Such schemes should reflect the true value of electricity to the grid, effectively drive research and development, and ensure transparency of performance and cost data.展开更多
Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyry...Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyryl bromide(BriB-Br)to obtain efficient macroinitiator for ATRP.And the macroinitiator was grafted with HEMA in water aqueous using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine(PMDETA)as catalyst system.The effects of monomer concentration,the proportion of CuBr and PMDETA,grafting temperature and time on the silk grafting were discussed,and the optimal grafting technology was obtained.FT-IR characterization of the grafted silk showed a peak corresponding to HEMA,which indicated that HEMA was grafted onto the surface of silk.ATRP method could be applied on the silk modification and this technique provided a new way for silk grafting.展开更多
Objective Melittin (MEL) is a major component of bee venom and can produce both persistent spontaneous nociception and pain hypersensitivity when injected subcutaneously in the periphery. The present study aimed to ...Objective Melittin (MEL) is a major component of bee venom and can produce both persistent spontaneous nociception and pain hypersensitivity when injected subcutaneously in the periphery. The present study aimed to examine the roles of transient receptor potential canonical (TRPC) channels in mediation of MEL-indueed activation of primary nociceptive cells. Methods Whole-cell patch-clamp and laser scanning confocal calcium detection were used to evalu- ate the effects of SKF-96365, a TRPC inhibitor, applied on the acutely isolated dorsal root ganglion (DRG) cells of rat, on MEL-induced increase in intracellular calcium concentration ([Ca2+]i) and inward current. Results Under voltage- clamp mode, 43.9% (40/91) DRG cells were evoked to give rise to the inward current by 2 pmol/L MEL, which could be significantly suppressed by 3 doses of SKF-96365 (1, 5 and 10μmol/L) in a dose-dependent manner. Of the other 210 cells, 67.6% responded to MEL with an intracellular Ca2+ rise, as revealed by confocal calcium imaging. Of these MEL- sensitive cells, 46.5% (66/142) were suppressed by the highest dose of SKF-96365. Conclusion MEL-induced activation of small to medium-sized DRG cells can be suppressed by SKF-96365, suggesting the involvement of TRPC channels in the mediation of MEL-induced activation of primary nociceptive cells.展开更多
A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: o...A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3 /SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1m < 3m) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed.展开更多
基金Project(S-MIP-20-17) supported by the Research Council of LithuaniaProject(871124) supported by the EU Horizon 2020, Research and Innovation program LASERLAB-EUROPE JRA。
文摘Here we report a femtosecond laser direct writing(a precise 3D printing also known as two-photon polymerization lithography) of hybrid organic-inorganic SZ2080^(TM)pre-polymer without using any photo-initiator and applying ~100 fs oscillator operating at 517 nm wavelength and 76 MHz repetition rate. The proof of concept was experimentally demonstrated and benchmarking 3D woodpile nanostructures, micro-scaffolds, free-form micro-object “Benchy” and bulk micro-cubes are successfully produced. The essential novelty underlies the fact that non-amplified laser systems delivering just 40-500 p J individual pulses are sufficient for inducing localized cross-linking reactions within hundreds of nanometers in cross sections. And it is opposed to the prejudice that higher pulse energies and lower repetition rates of amplified lasers are necessary for structuring non-photosensitized polymers. The experimental work is of high importance for fundamental understanding of laser enabled nanoscale 3D additive manufacturing and widens technology’ s field of applications where the avoidance of photo-initiator is preferable or is even a necessity, such as micro-optics, nano-photonics, and biomedicine.
基金supported by the Postgraduate Innovation Research Plan from Anhui University under Grant No.20073039
文摘We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages based on Bellbasis measurements and classical communication. The present protocol makes use of the ideas of block transmission and decoy particle checking technique. It has a high capacity as each cluster state can carry two 5its of information, and has a high intrinsic efficieney 5ecause almost all the instances except the decoy checking particles (its numSer is negligible) are useful. Furthermore, this protocol is feasible with present-day technique.
基金Project(217/s/458)supported by Azarbaijan Shahid Madani University,Iran
文摘A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.
文摘Uneven distribution of minor metals and migration of isotopes in polymeric material (polypropylene) - originating under certain physical and chemical conditions-could possibly affect the stability and bio-compatibility of such material. Unusually high levels of embedded surface metal isotopes from migration effects could affect studies such as tissue engineering and biospecific adhesion of cells to polymeric surfaces. There is, therefore, a general need to know the distribution of metal isotopes in such polymeric materials. We have developed an ultrasensitive technique for assessing the isotopic distribution in polymer matrices, and studying migration of metal isotopes. The technique uses laser ablation linked to an ICP-MS instrument. It is semi-quantitative and capable of high-resolution detection over a wide range of elemental levels. Polymers usually contain catalytic residues and other minor metal impurities. Some of the isotopes of these metals migrate to the surface, while others remain embedded deep in the polymeric product. Such unwanted metallic residues and isotopes could be a potential hazard, and ablative laser technology has the ability to study homogeneity of such distributions in the polymer matrix. The aim of this paper, therefore, is to explore the potential of our method for studying isotope migration using suitable polypropylene samples.
基金Supported by Consortiumon Competitiveness for the Apparel , Carpet ,and Textile Industries (CCACTI)
文摘Polypropylene fibers have been extensively used in a variety of/products, including carpets and upholstery, due to their non-absorbency, good weather resistance, good resistance to macroorgamsms and so on. Because of their hydrophobic and highly crystalline nature, those well-established conventionai dyeing processes are difficult to apply to unmodified polypropylene. Colors of polypropylene fibers are primarily obtained by mass coloration which has the disadvantages of limited number of colors available and difficulties in inventory control due to the rapidly changing color needs of the market. In this paper, the use of vat dyes to dye polypropylene fabrics is investigated. Seventeen vat dyes were screened and factors influencing uptake of dyes by polypropylene fabrics were studied.
文摘We investigated the interaction between DNA and hexammine cobalt III [Co(NH3)6]3+ by a simple molecular combing method and dynamic light scattering. The average extension of A- DNA-YOYO-1 complex is found to be 20.9μm, about 30% longer than the contour length of the DNA in TE buffer (10 mmol/L Tris, 1 mmol/L EDTA, pH=8.0), due to bis-intercalation of YOYO-1. A multivalent cation, hexammine cobalt, is used for DNA condensation. We find that the length of DNA-[Co(NH3)6]3+ complexes decrease from 20.9 μm to 5.9μm as the concentration of the [Co(NH3)6]3+ vary from 0 to 3 μmol/L. This observation provides a direct visualization of single DNA condensation induced by hexammine cobalt. The results from the molecular combing studies are supported by dynamic light scattering investigation, where the average hydrodynamic radius of the DNA complex decreases from 203.8 nm to 39.26 nm under the same conditions. It shows that the molecular combing method is feasible for quantitative conformation characterization of single bio-macromolecules.
文摘CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and elsewhere. This paper summarises the findings of a study by the European Academies Science Advisory Council which has examined the current status and development challenges of CSP, and consequently has evaluated the potential contribution of CSP in Europe and the MENA region to 2050. It identifies the actions that will be required by scientists, engineers, policy makers, politicians, business and investors alike, to enable this vast solar resource to make a major contribution to establishing a sustainable energy system. The study concludes that cost reductions of 50%-60% in CSP electricity may reasonably be expected in the next 10-15 years, enabling the technology to be cost competitive with fossil-fired power generation at some point between 2020 and 2030. Incorporation of storage delivers added value in enabling CSP to deliver dispatchable power. Incentive schemes will be needed in Europe and MENA countries to enable this point to be achieved. Such schemes should reflect the true value of electricity to the grid, effectively drive research and development, and ensure transparency of performance and cost data.
基金National Natural Science Foundation of China(No.50673071,No.50973079)Natural Science Fund for Colleges and Universities in Jiangsu Province,China(No.07KJD540188,No.09KJA540001)
文摘Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyryl bromide(BriB-Br)to obtain efficient macroinitiator for ATRP.And the macroinitiator was grafted with HEMA in water aqueous using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine(PMDETA)as catalyst system.The effects of monomer concentration,the proportion of CuBr and PMDETA,grafting temperature and time on the silk grafting were discussed,and the optimal grafting technology was obtained.FT-IR characterization of the grafted silk showed a peak corresponding to HEMA,which indicated that HEMA was grafted onto the surface of silk.ATRP method could be applied on the silk modification and this technique provided a new way for silk grafting.
基金supported by thegrants from National Natural Science Foundation of China (No. 30770668, 81070899)Beijing Natural Science Foundation (No. 7102019)Natural Science Foundation of Education Committee of Beijing Municipality, China (No. KM201010025005)
文摘Objective Melittin (MEL) is a major component of bee venom and can produce both persistent spontaneous nociception and pain hypersensitivity when injected subcutaneously in the periphery. The present study aimed to examine the roles of transient receptor potential canonical (TRPC) channels in mediation of MEL-indueed activation of primary nociceptive cells. Methods Whole-cell patch-clamp and laser scanning confocal calcium detection were used to evalu- ate the effects of SKF-96365, a TRPC inhibitor, applied on the acutely isolated dorsal root ganglion (DRG) cells of rat, on MEL-induced increase in intracellular calcium concentration ([Ca2+]i) and inward current. Results Under voltage- clamp mode, 43.9% (40/91) DRG cells were evoked to give rise to the inward current by 2 pmol/L MEL, which could be significantly suppressed by 3 doses of SKF-96365 (1, 5 and 10μmol/L) in a dose-dependent manner. Of the other 210 cells, 67.6% responded to MEL with an intracellular Ca2+ rise, as revealed by confocal calcium imaging. Of these MEL- sensitive cells, 46.5% (66/142) were suppressed by the highest dose of SKF-96365. Conclusion MEL-induced activation of small to medium-sized DRG cells can be suppressed by SKF-96365, suggesting the involvement of TRPC channels in the mediation of MEL-induced activation of primary nociceptive cells.
基金supported by the National Basic Research Program of China ("973" Program), (Grantt No. 2010CB227305)the CAS Solar Energy Action Program (Grant No. CX2090130012)
文摘A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3 /SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1m < 3m) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed.