Up to now there are many works investigated the stretched state of deoxyribonucleic axid (DNA) by optical trap. The main purpose of mentioned works is to find out the elastic force-extension characterisitic approxim...Up to now there are many works investigated the stretched state of deoxyribonucleic axid (DNA) by optical trap. The main purpose of mentioned works is to find out the elastic force-extension characterisitic approximatelly based on the experimental parameters. In experiments, the optical force is seem as an apply force, but not an own elastic force of DNA molecules. To use sufficiently optical tweezer to manipulate and hold the DNA molecules keeping in stretched state, it is necessary to use the elastic as one force contributing to process trapping it, and consequently, the term describing elastic force must be present in the general Langevin equation (GLE) describing the dynamic of driven bead linking to DNA molecule. In this paper, the finite difference equation of GLE is derived for simulation the dynamic of bead linking to DNA molecule embedded in the fluid. The process manipulation of polystyrene bead to tweezer center is simulated and discussed. From results, the role of Brownian force, elastic force and optical force on process trapping driven bead is evaluated. Moreover, the trapping time, velocity of bead are discussed, too.展开更多
文摘Up to now there are many works investigated the stretched state of deoxyribonucleic axid (DNA) by optical trap. The main purpose of mentioned works is to find out the elastic force-extension characterisitic approximatelly based on the experimental parameters. In experiments, the optical force is seem as an apply force, but not an own elastic force of DNA molecules. To use sufficiently optical tweezer to manipulate and hold the DNA molecules keeping in stretched state, it is necessary to use the elastic as one force contributing to process trapping it, and consequently, the term describing elastic force must be present in the general Langevin equation (GLE) describing the dynamic of driven bead linking to DNA molecule. In this paper, the finite difference equation of GLE is derived for simulation the dynamic of bead linking to DNA molecule embedded in the fluid. The process manipulation of polystyrene bead to tweezer center is simulated and discussed. From results, the role of Brownian force, elastic force and optical force on process trapping driven bead is evaluated. Moreover, the trapping time, velocity of bead are discussed, too.