A novel inorganic polymer flocculant,poly-ferric sulfate(BPFS) was prepared by oxidation of ferrous sulfate using domestic Thiobacillus ferrooxidans(T·f) under acid condition.The optimal conditions for the pr...A novel inorganic polymer flocculant,poly-ferric sulfate(BPFS) was prepared by oxidation of ferrous sulfate using domestic Thiobacillus ferrooxidans(T·f) under acid condition.The optimal conditions for the preparation were pH value of 1.5,(NH4)2SO4 dosage of 0.5 g/L,initial Fe2+ concentration of 45g/L,inoculum 10%,rotating speed of 120 r/min,reaction time of 5-6 d and reaction temperature of 30 ℃.Under the optimal conditions,the BPFS product with pH value of 1.5-2.2,basicity of 17.5%-22.7% and total iron content of 43.87-45.24 g/L was obtained.The application of the BPFS to three wastewaters was carried out,and the removal efficiencies of COD,decolorization and Zn2+ by BPFS can be reached 70%,90% and 99%,respectively.The result suggests that the BPFS is an excellent flocculant for water treatment.展开更多
The gel polymer electrolytes(GPEs)based on poly(vinylidence fluoride)(PVDF)/acrylate interpenetrating polymer network(IPN)are prepared.The micro-phase separation type GPEs are characterized by Fourier transfor...The gel polymer electrolytes(GPEs)based on poly(vinylidence fluoride)(PVDF)/acrylate interpenetrating polymer network(IPN)are prepared.The micro-phase separation type GPEs are characterized by Fourier transform infrared(FTIR)spectroscopy,scanning electron microscope(SEM),respectively.Moreover,the conductivity and the voltage-current curves of the electrolytes are measured by electrochemical workstation.The higher porosity and electrolyte uptake are observed in the membranes prepared at lower crosslinker concentration.The suitable cross-linking acrylate monomer improves the porosity and the electrochemical behavior of GPE.A dye-sensitized solar cell(DSSC)employing PGE based on PVDF/poly(ethylene glycol dimethacrylate)(PEGDMA)IPN yields an open-circuit voltage of 0.674 V,short-circuit current of 8.476 mA·cm-2and the conversion efficiency of 2.710% under 100 mW·cm-2illumination.展开更多
Flotation tailings were successfully flocculated in the presence of cationic polyacrylamide and silica gel.The effects of various parameters such as polymer weight,charge density,and pH on the rate of flocculation wer...Flotation tailings were successfully flocculated in the presence of cationic polyacrylamide and silica gel.The effects of various parameters such as polymer weight,charge density,and pH on the rate of flocculation were also investigated in the current study.The flocculation mechanism of the flocculant on tailings was investigated using zeta potential and Fourier transform infrared(FTIR)measurements.The results obtained reveal that 1)sodium silicate gel,used as a binder for the consolidation of tailings form primary flocs,acts as an anchor and the adsorption of polymer flocculant on these anchors results in the formation of larger flocs and,consequently,enhanced settling rate;2)flocculation in the presence of silica gel and polymer has a faster settling rate than single-polymer flocculation owing to the mechanisms of charge neutralization and bridging as identified using zeta potential and FTIR measurements.A pilot level study was conducted to investigate the influence of processed water on the flotation of scheelite.The results show that the proposed tailing disposal method could improve scheelite recovery by 2%(approximately)and could reduce the daily operation costs of the plant by approximately 108.57 USD.展开更多
In an effort to simplify the procedure and to reduce the cost of fluorescence SSR analysis, the conditions of the multiplex PCR and the multiplex gel electrophoresis were optimized in the genetic analysis of sunflower...In an effort to simplify the procedure and to reduce the cost of fluorescence SSR analysis, the conditions of the multiplex PCR and the multiplex gel electrophoresis were optimized in the genetic analysis of sunflower (Helianthus annuus L.) inbred lines. Results indicated that factors for a successful multiplex PCR assay were related to the cycling touchdown annealing temperature, the balance of primer concentration at the various loci, the concentration of PCR buffer and the Taq DNA polymerase. Based on the optimization, a tailed primer strategy was outlined, and the effective ways were proposed to overcome the troubleshootings commonly encountered in the multiplex PCR and the multiplex gel electrophoresis.展开更多
Composite polymer electrolytes based on polyethylene oxide(PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and con...Composite polymer electrolytes based on polyethylene oxide(PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and condensation reaction of Si(OC4H9)4. The crystallinity,morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry,scanning electron microscopy,atom force microscopy and alternating current impedance spectroscopy,respectively. Compared with the crystallinity of the unmodified SiO2 as inert filler,that of composite polymer electrolytes is decreased. The results show that silane-modified SiO2 particles are uniformly dispersed in (PEO)8LiClO4 composite polymer electrolyte film and the addition of silane-modified SiO2 increases the ionic conductivity of the (PEO)8LiClO4 more noticeably. When the mass fraction of SiO2 is about 10%,the conductivity of (PEO)8LiClO4-modified SiO2 attains a maximum value of 4.8×10-5 S·cm-1.展开更多
Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functiona...Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.展开更多
In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction ...In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, wecalculate again its ground-state phase diagram at Glling x = 0.5 by the unrestricted real-spaceHartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases,the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomesmore stable. In other words, the charge order is much more fragile than the CE-type or theNeel-type antiferromagnetic orders under the electron-phonon perturbation. These results support theproposed theory in the recent publications that the charge order in these systems is induced by theantiferromagnetic correlations.展开更多
In this article, poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogels were synthesized by bulk free-radical copolymerization of 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) for soft contact lens(...In this article, poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogels were synthesized by bulk free-radical copolymerization of 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) for soft contact lens(SCL)-based ophthalmic drug delivery system. The copolymer was characterized with FT-IR and SEM, the swelling property of the hydrogels were studied by gravimetrical method, and chloramphenicol was used as a model drug to investigate drug release profile of the hydrogels. The results showed that poly(2-hydroxyethylmethacrylateco-acrylamide) hydrogels were transparent and useful SCL biomaterial, the water content increased as AAm content increase and pH decrease, and in the same way, hydrogel composition affected chloramphenicol release process too. Migration rate of chloramphenicol increased as the AAm content in the hydrogels increased in the first stage of diffusion process, whereas there was no significant difference thereafter.展开更多
We study the Hcisenberg moder under the influence of a rotating magnetic field. By using a time- dependent unitary transformation, the time evolution operator for the Schrodinger equation is obtained, which involves n...We study the Hcisenberg moder under the influence of a rotating magnetic field. By using a time- dependent unitary transformation, the time evolution operator for the Schrodinger equation is obtained, which involves no chronological product. The spin vectors (mean values of the spin operators) are obtained as explicit functions of time in the most general case. A series of cyclic solutions are presented. The nonadiabatic geometric phases of these cyclic solutions are caleulated, and are expressed in terms of the solid angle subtended by the closed trace of thc total spin vector, as well as in terms of those of the individual spins.展开更多
We study entanglement in dimerized Heisenberg systems. In particular, we give exact results of groundstate pairwise entanglement for the four-qubit model by identifying a Z2 symmetry. Although the entanglements cannot...We study entanglement in dimerized Heisenberg systems. In particular, we give exact results of groundstate pairwise entanglement for the four-qubit model by identifying a Z2 symmetry. Although the entanglements cannot identify the critical point of the system, the mean entanglement of the nearest-neighbor qubits really does, namely, it reaches a maximum at the critical point.展开更多
Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in ...Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in geopolymer mortars and concretes. Geopolymeric cement is an inorganic compounds of aluminosilicates synthesized from precursors with high content of silica and alumina activated by alkali silicate solutions. Geopolymer in this experiment was synthesized from fly ash as the precursor and sodium silicate solution as the activator. Hardening of geopolymers was performed by heating the casted paste in an oven at -60~Cfor 3 to 36 hours. Compressive strength of geopolymer pastes and mortars using either fresh or waste fine aggregates were in the range of 19-26 MPa. Hardening time of 3 hours at 60~C followed by leaving the test pieces at room temperature for 7 day before testing results in similar strength to that of mortars cured for 36 hours at 60~C followed by leaving the samples at room temperature for 3 days. It suggests that optimum strength can be achieved by combination of heating time and rest period before testing, i.e the specimens age. Applying mix design with a target strength of 40 MPa, conventional Portland cement concretes using fresh aggregates reached 70% of its target strength at day-7. Compressive strength of geopolymer concretes with waste aggregates was -25 MPa at day-3 while geopolymer concretes with fresh aggregates achieved -39 MPa at day-3. It can be concluded that geopolymer concretes can achieve the target strength in only 3 days. However, the expected reinforcing effect of coarse aggregates in concrete was ineffective if waste coarse aggregates were used as the strength of the concretes did not increase significantly from that of the mortars. On the other hand, waste fine aggregates can be reused for making geopolymer mortars having the same strength as the geopolymer mortars using fresh aggregates.展开更多
Owing to the potential ability of metal nanoparticles to enhance the performance of energy storage devices,their catalytic performance has been studied by many researchers.However,a limited number of suitable characte...Owing to the potential ability of metal nanoparticles to enhance the performance of energy storage devices,their catalytic performance has been studied by many researchers.However,a limited number of suitable characterization techniques does not allow fully elucidating their catalytic mechanism.Herein,high‐accuracy operando magnetometry is employed to investigate the catalytic properties of a cobalt oxide electrode for lithium‐ion batteries fabricated by magnetron sputtering.Using this technique,the magnetic responses generated by the Co‐catalyzed reversible formation and decomposition of a polymer/gel‐like film are successfully detected.A series of CoO/Co films are prepared by magnetron sputtering in different environments at various sputtering times to study the influence of Co content and film thickness on their catalytic properties.It is clearly demonstrated that increasing the Co content enhances the magnetic signal associated with the catalysis process.Furthermore,decreasing the electrode thickness increases the area affected by the catalytic reactions,which in turn enhances the corresponding magnetic responses.The obtained results experimentally confirm the catalytic activity of Co metal nanoparticles and provide a scientific guidance for designing advanced energy storage devices.This work also shows that operando magnetometry is a versatile technique for studying the catalytic effects of transition metals.展开更多
The flocculation behavior of ultrafine kaolinite suspension was investigated through settlement tests and FTIR method was employed to probe the adsorption mechanism of flocculant on kaolinite. The results show that th...The flocculation behavior of ultrafine kaolinite suspension was investigated through settlement tests and FTIR method was employed to probe the adsorption mechanism of flocculant on kaolinite. The results show that the maximum settling rate of kaolinite occurs at pH value of 3.33,which is close to the point of zero charge(PZC) of kaolinite (3.5). This result is in good agreement with the double electric layer theory. Kaolinite suspension reaches the largest settling rate at a low concentration of 39 g/t for poly diallyl-dimethyl-ammonium chloride(PDADMA) flocculant,whereas for polyacrylamides(PAM) the dosage is required to be 500 g/t. When macromolecule polymer is adsorbed on surface,kaolinite particles may be flocculant due to the bridging effect. There are cation flocculant characteristic bands on the spectrum of kaolinite but no obvious shifting. Thus,the adsorption of poly diallyl-dimethyl-ammonium chloride on kaolinite surface is physical adsorption.展开更多
This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive str...This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive strength of geopolymer concretes were studied. The geopolymer concrete were prepared from Mae Moh fly ash with sodium silicate (Na2SiO3) and sodium hydroxide (Na(OH)) solutions. In the first group, concentration of Na(OH) was varied at 8, 10, 12, and 14 molar and the Si/AI ratio was kept constant at 1.98. In the second group, a concentration of Na(OH) was kept constant at 14 molar and the Si/AI ratio was varied at 2.2, 2.4, 2.6, and 2.8. The hardened concretes were air-cured in laboratory. The compressive strength and water permeability were tested at the age of 28 and 60 days. The results showed that compressive strengths of geopolymer concrete significantly increased with the increase of a concentration of Na(OH) and Si/AI ratio. The water permeability coefficients increase with the decrease of compressive strength. In addition, the high reduction of water permeability coefficients with time was found in geopolymer concrete with lower Na(OH) concentration than that higher Na(OH) concentration.展开更多
Seventy-nine strains of bioflocculant-producing bacteria were isolated from 3 activated sludge samples. Among them, strain MYC was found to have the highest and stable flocculating rate for both kaolin clay suspension...Seventy-nine strains of bioflocculant-producing bacteria were isolated from 3 activated sludge samples. Among them, strain MYC was found to have the highest and stable flocculating rate for both kaolin clay suspension and oil-field produced water. The bacterial strain was identified as Klebsiella sp. MYC according to its morphological and biochemical characteristics and 16SrDNA sequence. The optimal medium for bioflocculant production by this bacterial strain was composed of cane sugar 20 g L^-1, KH2PO4 2 g L^-1, K2HPO4 5 g L^- 1, ( NH4)2SO4 0.2 g L^-1, urea 0.5 g L^- 1 and yeast extract 0.5 g L^- 1, the initial pH being 5.5. When the suspension of kaolin clay was treated with0.5% of Klebsiella sp. MYC culture broth, the flocculating rate reached more than 90.0% in the presence of 500mg L^-1 CaCI2, while the flocculating rate for oil-field produced water was near 80.0% in a pH range of 7.0 - 9.0 with the separation of oil and suspended particles from the oil-field produced water under similar conditions. The environment-friendly nature of the bioflocculant and high flocculating rate of the strain make the bioflocculant produced by Klebsiella sp. MYC an attractive bioflocculant in oil-field produced water treatment.展开更多
A series of clay/poly(N-isopropylacrylamide-co-acrylamide) nanocomposite hydrogels (S-N-M gels) have been successfully prepared by in situ polymerization. The mechanical properties, swelling behavior of S-N-M gels...A series of clay/poly(N-isopropylacrylamide-co-acrylamide) nanocomposite hydrogels (S-N-M gels) have been successfully prepared by in situ polymerization. The mechanical properties, swelling behavior of S-N-M gels and the transparency changes during polymerization of S-N-M gels have been systematically investigated. Compared to traditional hydrogels, S-N-M gels show excellent tensile properties and their swelling ratio increases with increasing acrylamide (AAm) content. The results of stress relaxation indicate that the stress loss decreases with increasing AAm content. It was surprisingly found that the transparency during all S-N-M gel synthesis changes abruptly, and the changes become more abrupt with increasing N-isopropylacrylamide content. It was concluded that the fact may be related to the hydrophilicity of copolymers. The weaker the hydrophilicity of copolymer, the more apparent the transparency change during S-N-M gels polymerization. We believe the relationship between hydrophilicity of copolymer and transparency changes will help to design novel nanocomposite hydrogels.展开更多
Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size...Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.展开更多
Organic matrices play an important role in biomineralization process. In order to explore the effect of both meso-tetrakis (4-hydroxylphenyl) porphyrin (THPP) and hydrogels on calcium carbonate mineralization,and cons...Organic matrices play an important role in biomineralization process. In order to explore the effect of both meso-tetrakis (4-hydroxylphenyl) porphyrin (THPP) and hydrogels on calcium carbonate mineralization,and consequently synthesize functional materials based on porphyrin and calcium carbonate with tunable shapes and optical properties,a new kind of biomimetic mineralization system which combined THPP with three biopolymer hydrogels (gelatin,agarose and calcium alginate gels) was designed and investigated. A carbonate diffusion method based on the generation of CO2 by slow decomposition of ammonium hydrogen carbonate was adopted for calcium carbonate crystallization. The results show that both gelatin and alginate hydrogels exhibit the ability of stabilizing vaterite,while agarose only induces the formation of calcite. With participation of THPP in the mineralization environments,calcite is favored in all these hydrogels,while the crystal morphologies are greatly different from each other. These results indicate the perspective of THPP in regulating calcium carbonate crystallization and also provide a new strategy for fabricating advanced functional materials with controlled morphology and tunable optical properties based on calcium carbonate and THPP.展开更多
Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embed...Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embedded in concrete. Two kinds of conventional reinforcing rebars were also studied for comparison. Each rebar was embedded in a 150 mm concrete cube,with the embedded length being four times the rebar diameter. The experimental parameters were the rebar type,rebar component,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the bond strength of GFRP rebars was about 13%~35% lower than that of steel rebars. The bond strength and bond-slip behavior of the specially machined rebars varied with the rebar type,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Using the results,design recom-mendations were made concerning optimum rib geometries of GFRP ribbed rebars with superior bond-slip characteristics,which concluded that the optimal rib spacing of ribbed rebars is the same as the rebar diameter,and that the optimal rib height is 6% of the rebar diameter.展开更多
基金Project (2009ZX07212-001-01) supported by the Major Science and Technology Program for Water Pollution Control and Treatment,ChinaProject (50925417) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProjects (50830301,51074191) supported by the National Natural Science Foundation of China
文摘A novel inorganic polymer flocculant,poly-ferric sulfate(BPFS) was prepared by oxidation of ferrous sulfate using domestic Thiobacillus ferrooxidans(T·f) under acid condition.The optimal conditions for the preparation were pH value of 1.5,(NH4)2SO4 dosage of 0.5 g/L,initial Fe2+ concentration of 45g/L,inoculum 10%,rotating speed of 120 r/min,reaction time of 5-6 d and reaction temperature of 30 ℃.Under the optimal conditions,the BPFS product with pH value of 1.5-2.2,basicity of 17.5%-22.7% and total iron content of 43.87-45.24 g/L was obtained.The application of the BPFS to three wastewaters was carried out,and the removal efficiencies of COD,decolorization and Zn2+ by BPFS can be reached 70%,90% and 99%,respectively.The result suggests that the BPFS is an excellent flocculant for water treatment.
文摘The gel polymer electrolytes(GPEs)based on poly(vinylidence fluoride)(PVDF)/acrylate interpenetrating polymer network(IPN)are prepared.The micro-phase separation type GPEs are characterized by Fourier transform infrared(FTIR)spectroscopy,scanning electron microscope(SEM),respectively.Moreover,the conductivity and the voltage-current curves of the electrolytes are measured by electrochemical workstation.The higher porosity and electrolyte uptake are observed in the membranes prepared at lower crosslinker concentration.The suitable cross-linking acrylate monomer improves the porosity and the electrochemical behavior of GPE.A dye-sensitized solar cell(DSSC)employing PGE based on PVDF/poly(ethylene glycol dimethacrylate)(PEGDMA)IPN yields an open-circuit voltage of 0.674 V,short-circuit current of 8.476 mA·cm-2and the conversion efficiency of 2.710% under 100 mW·cm-2illumination.
基金Project(2016zzts109)supported by the Innovation Driven Plan of Central South University,ChinaProject(2015CX005)supported by the Innovation driven Program of National Basic Research Program of ChinaProject(B14034)supported by the Program of Introdution Talents of Discipline to Universities,China(111 Project)
文摘Flotation tailings were successfully flocculated in the presence of cationic polyacrylamide and silica gel.The effects of various parameters such as polymer weight,charge density,and pH on the rate of flocculation were also investigated in the current study.The flocculation mechanism of the flocculant on tailings was investigated using zeta potential and Fourier transform infrared(FTIR)measurements.The results obtained reveal that 1)sodium silicate gel,used as a binder for the consolidation of tailings form primary flocs,acts as an anchor and the adsorption of polymer flocculant on these anchors results in the formation of larger flocs and,consequently,enhanced settling rate;2)flocculation in the presence of silica gel and polymer has a faster settling rate than single-polymer flocculation owing to the mechanisms of charge neutralization and bridging as identified using zeta potential and FTIR measurements.A pilot level study was conducted to investigate the influence of processed water on the flotation of scheelite.The results show that the proposed tailing disposal method could improve scheelite recovery by 2%(approximately)and could reduce the daily operation costs of the plant by approximately 108.57 USD.
文摘In an effort to simplify the procedure and to reduce the cost of fluorescence SSR analysis, the conditions of the multiplex PCR and the multiplex gel electrophoresis were optimized in the genetic analysis of sunflower (Helianthus annuus L.) inbred lines. Results indicated that factors for a successful multiplex PCR assay were related to the cycling touchdown annealing temperature, the balance of primer concentration at the various loci, the concentration of PCR buffer and the Taq DNA polymerase. Based on the optimization, a tailed primer strategy was outlined, and the effective ways were proposed to overcome the troubleshootings commonly encountered in the multiplex PCR and the multiplex gel electrophoresis.
文摘Composite polymer electrolytes based on polyethylene oxide(PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and condensation reaction of Si(OC4H9)4. The crystallinity,morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry,scanning electron microscopy,atom force microscopy and alternating current impedance spectroscopy,respectively. Compared with the crystallinity of the unmodified SiO2 as inert filler,that of composite polymer electrolytes is decreased. The results show that silane-modified SiO2 particles are uniformly dispersed in (PEO)8LiClO4 composite polymer electrolyte film and the addition of silane-modified SiO2 increases the ionic conductivity of the (PEO)8LiClO4 more noticeably. When the mass fraction of SiO2 is about 10%,the conductivity of (PEO)8LiClO4-modified SiO2 attains a maximum value of 4.8×10-5 S·cm-1.
基金supported by the National Natural Science Foundation of China (No.51773190 and No.51973206)。
文摘Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.
文摘In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, wecalculate again its ground-state phase diagram at Glling x = 0.5 by the unrestricted real-spaceHartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases,the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomesmore stable. In other words, the charge order is much more fragile than the CE-type or theNeel-type antiferromagnetic orders under the electron-phonon perturbation. These results support theproposed theory in the recent publications that the charge order in these systems is induced by theantiferromagnetic correlations.
基金Supported by the Natural Science Foundation of Guangdong Province (5300978) and Zhongkai University of Agriculture and Engineering (G2360221).
文摘In this article, poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogels were synthesized by bulk free-radical copolymerization of 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) for soft contact lens(SCL)-based ophthalmic drug delivery system. The copolymer was characterized with FT-IR and SEM, the swelling property of the hydrogels were studied by gravimetrical method, and chloramphenicol was used as a model drug to investigate drug release profile of the hydrogels. The results showed that poly(2-hydroxyethylmethacrylateco-acrylamide) hydrogels were transparent and useful SCL biomaterial, the water content increased as AAm content increase and pH decrease, and in the same way, hydrogel composition affected chloramphenicol release process too. Migration rate of chloramphenicol increased as the AAm content in the hydrogels increased in the first stage of diffusion process, whereas there was no significant difference thereafter.
文摘We study the Hcisenberg moder under the influence of a rotating magnetic field. By using a time- dependent unitary transformation, the time evolution operator for the Schrodinger equation is obtained, which involves no chronological product. The spin vectors (mean values of the spin operators) are obtained as explicit functions of time in the most general case. A series of cyclic solutions are presented. The nonadiabatic geometric phases of these cyclic solutions are caleulated, and are expressed in terms of the solid angle subtended by the closed trace of thc total spin vector, as well as in terms of those of the individual spins.
基金The project supported by National Natural Science Foundation of China under Grant No. 10405019
文摘We study entanglement in dimerized Heisenberg systems. In particular, we give exact results of groundstate pairwise entanglement for the four-qubit model by identifying a Z2 symmetry. Although the entanglements cannot identify the critical point of the system, the mean entanglement of the nearest-neighbor qubits really does, namely, it reaches a maximum at the critical point.
文摘Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in geopolymer mortars and concretes. Geopolymeric cement is an inorganic compounds of aluminosilicates synthesized from precursors with high content of silica and alumina activated by alkali silicate solutions. Geopolymer in this experiment was synthesized from fly ash as the precursor and sodium silicate solution as the activator. Hardening of geopolymers was performed by heating the casted paste in an oven at -60~Cfor 3 to 36 hours. Compressive strength of geopolymer pastes and mortars using either fresh or waste fine aggregates were in the range of 19-26 MPa. Hardening time of 3 hours at 60~C followed by leaving the test pieces at room temperature for 7 day before testing results in similar strength to that of mortars cured for 36 hours at 60~C followed by leaving the samples at room temperature for 3 days. It suggests that optimum strength can be achieved by combination of heating time and rest period before testing, i.e the specimens age. Applying mix design with a target strength of 40 MPa, conventional Portland cement concretes using fresh aggregates reached 70% of its target strength at day-7. Compressive strength of geopolymer concretes with waste aggregates was -25 MPa at day-3 while geopolymer concretes with fresh aggregates achieved -39 MPa at day-3. It can be concluded that geopolymer concretes can achieve the target strength in only 3 days. However, the expected reinforcing effect of coarse aggregates in concrete was ineffective if waste coarse aggregates were used as the strength of the concretes did not increase significantly from that of the mortars. On the other hand, waste fine aggregates can be reused for making geopolymer mortars having the same strength as the geopolymer mortars using fresh aggregates.
文摘Owing to the potential ability of metal nanoparticles to enhance the performance of energy storage devices,their catalytic performance has been studied by many researchers.However,a limited number of suitable characterization techniques does not allow fully elucidating their catalytic mechanism.Herein,high‐accuracy operando magnetometry is employed to investigate the catalytic properties of a cobalt oxide electrode for lithium‐ion batteries fabricated by magnetron sputtering.Using this technique,the magnetic responses generated by the Co‐catalyzed reversible formation and decomposition of a polymer/gel‐like film are successfully detected.A series of CoO/Co films are prepared by magnetron sputtering in different environments at various sputtering times to study the influence of Co content and film thickness on their catalytic properties.It is clearly demonstrated that increasing the Co content enhances the magnetic signal associated with the catalysis process.Furthermore,decreasing the electrode thickness increases the area affected by the catalytic reactions,which in turn enhances the corresponding magnetic responses.The obtained results experimentally confirm the catalytic activity of Co metal nanoparticles and provide a scientific guidance for designing advanced energy storage devices.This work also shows that operando magnetometry is a versatile technique for studying the catalytic effects of transition metals.
基金Project(2005CB623701) supported by the Major State Basic Research Development Program of China
文摘The flocculation behavior of ultrafine kaolinite suspension was investigated through settlement tests and FTIR method was employed to probe the adsorption mechanism of flocculant on kaolinite. The results show that the maximum settling rate of kaolinite occurs at pH value of 3.33,which is close to the point of zero charge(PZC) of kaolinite (3.5). This result is in good agreement with the double electric layer theory. Kaolinite suspension reaches the largest settling rate at a low concentration of 39 g/t for poly diallyl-dimethyl-ammonium chloride(PDADMA) flocculant,whereas for polyacrylamides(PAM) the dosage is required to be 500 g/t. When macromolecule polymer is adsorbed on surface,kaolinite particles may be flocculant due to the bridging effect. There are cation flocculant characteristic bands on the spectrum of kaolinite but no obvious shifting. Thus,the adsorption of poly diallyl-dimethyl-ammonium chloride on kaolinite surface is physical adsorption.
文摘This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive strength of geopolymer concretes were studied. The geopolymer concrete were prepared from Mae Moh fly ash with sodium silicate (Na2SiO3) and sodium hydroxide (Na(OH)) solutions. In the first group, concentration of Na(OH) was varied at 8, 10, 12, and 14 molar and the Si/AI ratio was kept constant at 1.98. In the second group, a concentration of Na(OH) was kept constant at 14 molar and the Si/AI ratio was varied at 2.2, 2.4, 2.6, and 2.8. The hardened concretes were air-cured in laboratory. The compressive strength and water permeability were tested at the age of 28 and 60 days. The results showed that compressive strengths of geopolymer concrete significantly increased with the increase of a concentration of Na(OH) and Si/AI ratio. The water permeability coefficients increase with the decrease of compressive strength. In addition, the high reduction of water permeability coefficients with time was found in geopolymer concrete with lower Na(OH) concentration than that higher Na(OH) concentration.
文摘Seventy-nine strains of bioflocculant-producing bacteria were isolated from 3 activated sludge samples. Among them, strain MYC was found to have the highest and stable flocculating rate for both kaolin clay suspension and oil-field produced water. The bacterial strain was identified as Klebsiella sp. MYC according to its morphological and biochemical characteristics and 16SrDNA sequence. The optimal medium for bioflocculant production by this bacterial strain was composed of cane sugar 20 g L^-1, KH2PO4 2 g L^-1, K2HPO4 5 g L^- 1, ( NH4)2SO4 0.2 g L^-1, urea 0.5 g L^- 1 and yeast extract 0.5 g L^- 1, the initial pH being 5.5. When the suspension of kaolin clay was treated with0.5% of Klebsiella sp. MYC culture broth, the flocculating rate reached more than 90.0% in the presence of 500mg L^-1 CaCI2, while the flocculating rate for oil-field produced water was near 80.0% in a pH range of 7.0 - 9.0 with the separation of oil and suspended particles from the oil-field produced water under similar conditions. The environment-friendly nature of the bioflocculant and high flocculating rate of the strain make the bioflocculant produced by Klebsiella sp. MYC an attractive bioflocculant in oil-field produced water treatment.
基金the National Natural Science Foundation of China (Project No.50473002),and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No.704021). the National High-tech 863 Project (2002AA302616), and the Shanghai Nano Special Projects (0452nm006, 05nm05005).
文摘A series of clay/poly(N-isopropylacrylamide-co-acrylamide) nanocomposite hydrogels (S-N-M gels) have been successfully prepared by in situ polymerization. The mechanical properties, swelling behavior of S-N-M gels and the transparency changes during polymerization of S-N-M gels have been systematically investigated. Compared to traditional hydrogels, S-N-M gels show excellent tensile properties and their swelling ratio increases with increasing acrylamide (AAm) content. The results of stress relaxation indicate that the stress loss decreases with increasing AAm content. It was surprisingly found that the transparency during all S-N-M gel synthesis changes abruptly, and the changes become more abrupt with increasing N-isopropylacrylamide content. It was concluded that the fact may be related to the hydrophilicity of copolymers. The weaker the hydrophilicity of copolymer, the more apparent the transparency change during S-N-M gels polymerization. We believe the relationship between hydrophilicity of copolymer and transparency changes will help to design novel nanocomposite hydrogels.
基金Project(2009CB623201) supported by the National Basic Research Program of ChinaProject(G0510) supported by the Key Laboratory for Refractories and High-temperature Ceramics of Hubei Province, China
文摘Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.
基金Project supported by the Fundamental Research Funds for the Central Universities of ChinaProject (50573019) supported by the National Natural Science Foundation of ChinaProject (SKL2009-5) supported by Open Research Program of State Key Lab of Silicon Material,Zhejiang University,China
文摘Organic matrices play an important role in biomineralization process. In order to explore the effect of both meso-tetrakis (4-hydroxylphenyl) porphyrin (THPP) and hydrogels on calcium carbonate mineralization,and consequently synthesize functional materials based on porphyrin and calcium carbonate with tunable shapes and optical properties,a new kind of biomimetic mineralization system which combined THPP with three biopolymer hydrogels (gelatin,agarose and calcium alginate gels) was designed and investigated. A carbonate diffusion method based on the generation of CO2 by slow decomposition of ammonium hydrogen carbonate was adopted for calcium carbonate crystallization. The results show that both gelatin and alginate hydrogels exhibit the ability of stabilizing vaterite,while agarose only induces the formation of calcite. With participation of THPP in the mineralization environments,calcite is favored in all these hydrogels,while the crystal morphologies are greatly different from each other. These results indicate the perspective of THPP in regulating calcium carbonate crystallization and also provide a new strategy for fabricating advanced functional materials with controlled morphology and tunable optical properties based on calcium carbonate and THPP.
基金Project (No. 200431882021) supported by the Western Communi-cation Construction and Science & Technological Project,China
文摘Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embedded in concrete. Two kinds of conventional reinforcing rebars were also studied for comparison. Each rebar was embedded in a 150 mm concrete cube,with the embedded length being four times the rebar diameter. The experimental parameters were the rebar type,rebar component,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the bond strength of GFRP rebars was about 13%~35% lower than that of steel rebars. The bond strength and bond-slip behavior of the specially machined rebars varied with the rebar type,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Using the results,design recom-mendations were made concerning optimum rib geometries of GFRP ribbed rebars with superior bond-slip characteristics,which concluded that the optimal rib spacing of ribbed rebars is the same as the rebar diameter,and that the optimal rib height is 6% of the rebar diameter.