期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
可控制纤维取向的长玻纤增强塑料管材挤出机头 被引量:2
1
作者 孙利民 申长雨 杨云珍 《工程塑料应用》 CAS CSCD 北大核心 2004年第6期59-62,共4页
介绍笔者发明的两个关于长玻纤在线挤出增强管材机头的专利 ,描述了这两个机头的结构特点和工作原理 ,其特征为 ,机头可安装在现有通用的挤出机上 ,使用普通的聚合物粒料 ,在粒料塑化熔融后在线混入一定长度的玻纤 。
关键词 长玻纤 增强塑料管材 挤出机头 在线复配 纤维取向 聚合物粒料
下载PDF
聚丙烯和聚乙烯熔融过程的超声波扫描热学分析
2
作者 郭冰 王克俭 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2012年第11期117-120,共4页
用建立的超声波和PVT同步检测装置检测了聚丙烯和聚乙烯的熔融行为。改变温度,高密度聚乙烯中超声波曲线与动态扫描量热学(DSC)曲线有一定相似性,可反映熔融过程。不同压力下超声曲线相似;随压力升高,熔融起始温度、峰值温度和结束温度... 用建立的超声波和PVT同步检测装置检测了聚丙烯和聚乙烯的熔融行为。改变温度,高密度聚乙烯中超声波曲线与动态扫描量热学(DSC)曲线有一定相似性,可反映熔融过程。不同压力下超声曲线相似;随压力升高,熔融起始温度、峰值温度和结束温度都向高温几乎呈线性偏移。粒料和密实本体料的密度随温度变化规律不同,基于机械波特性的超声振幅和衰减曲线能体现其变化特点。可见,超声波扫描热学(USC)可研究压力和时间对聚合物熔融的影响,接近工程条件,可用于在线检测。 展开更多
关键词 超声波扫描热学 动态扫描量热学 熔融 压力 聚合物粒料
下载PDF
Properties of flyash based wood geopolymer composite
3
作者 B.S.Mamatha D.Sujatha +1 位作者 D.N.Uday M.C.Kiran 《Low-carbon Materials and Green Construction》 2023年第1期391-404,共14页
Geopolymers are inorganic adhesive synthesized from industrial waste such as fly ash thus the development of wood geopolymer composite would be a low carbon footprint material.Geopolymers,being a non-formaldehyde adhe... Geopolymers are inorganic adhesive synthesized from industrial waste such as fly ash thus the development of wood geopolymer composite would be a low carbon footprint material.Geopolymers,being a non-formaldehyde adhesive can be used as an alternative binder for wood based composites where environmentally friendly and sustainability of product is important.In this study flyash as precursor is been used in the development of wood geopolymer composite product.Flyash is activated with a combination of sodium hydroxide and sodium silicate solutions at a weight ratio of 1:2.5 for geopolymer formation.The study investigated the properties of wood geopolymer composite made with ratios of wood particle to flyash percentage(23/77),(37/62),(44/55),(50/50)and(57/43).Geopolymer formation was observed by X-ray Diffraction(XRD)and Fourier transform infrared spectroscopy(FTIR).Influence of wood particles in wood geopolymer composite were observed by Scanning electron microscope.The study shows that the water absorption and thickness selling properties of all the formulations of wood geopolymer composites are comparable with the medium density particle board and cement-bonded particleboard according to the IS:3087-2005 standard and IS:12406:respectively.Highest mechanical properties and good bond strength was obtained by the composite containing 23%wood particle ratio with 77%percent flyash.However,still improvement in mechanical properties is needed to achieve the mechanical properties comparable to cement bonded particle board. 展开更多
关键词 GEOPOLYMER Composite Wood particle Inorganic adhesive FLYASH
原文传递
Hollow micro- and nano-particles by gas foaming 被引量:1
4
作者 Silvia Orsi Ernesto Di Maio +1 位作者 Salvatore lannace Paolo A. Netti 《Nano Research》 SCIE EI CAS CSCD 2014年第7期1018-1026,共9页
This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly ... This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly and cheap technology, common in polymer processing and known as gas foaming. The central role played by ad hoc polymeric hollow micro- and nano-particles in a variety of emerging applications such as drug delivery, medical imaging, advanced materials, as well as in fundamental studies in nanotechnology highlights the wide relevance of the proposed method. Our key contribution to overcome the physical lower bound in the micro- and nano-scale gas foaming was to embed, prior to foaming, bulk micro- and nano-particles in a removable and deformable barrier film, whose role is to prevent the loss of the blowing agent, which is otherwise too fast to allow bubble formation. Furthermore, the barrier film allows for non-isotropic deformation of the particle and/or of the hollow, affording non-spherical hollow particles. In comparison with available methods to produce hollow micro- and nano-particles, our method is versatile since it offers independent control over the dimensions, material and shape of the particles, and the number, shape and open/closed features of the hollows. We have gas- foamed polystyrene and poly-(lactic-co-glycolic) acid particles 200 ~m to 200 nm in size, spherical, ellipsoidal and discoidal in shape, obtaining open or closed, single or multiple, variable in size hollows. 展开更多
关键词 HOLLOW NANOPARTICLES MICROPARTICLES gas foaming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部