The diblock copolymers intercalated layered silicate was prepared via a melt dispersion technique. Then the effect of intercalated hybrid as filler on acrylonitrile- butadiene-styrene resin was characterized by X-ray ...The diblock copolymers intercalated layered silicate was prepared via a melt dispersion technique. Then the effect of intercalated hybrid as filler on acrylonitrile- butadiene-styrene resin was characterized by X-ray diffraction, transmission electron microscopy, stress-strain measurements in elongation.展开更多
We present an empirical model for the effective thermal conductivity (ETC) of a polymer composite that includes dependency on the filler size distribution-chosen as the Rosin-Rammler distribution. The ETC is determine...We present an empirical model for the effective thermal conductivity (ETC) of a polymer composite that includes dependency on the filler size distribution-chosen as the Rosin-Rammler distribution. The ETC is determined based on certain hypotheses that connect the behavior of a real composite material A, to that of a model composite material B, filled with mono-dimensional filler. The application of these hypotheses to the Maxwell model for ETC is presented. The validation of the new model and its characteristic equation was carried out using experimental data from the reference. The comparison showed that by using the size distribution law a very good fit between the equation of the new model (the size distribution model for the ETC) and the reference experimental results is obtained, even for high volume fractions, up to about 50%.展开更多
基金Chinese Education Ministry Foundation for Nankai University and Tianjin University Joint Academy
文摘The diblock copolymers intercalated layered silicate was prepared via a melt dispersion technique. Then the effect of intercalated hybrid as filler on acrylonitrile- butadiene-styrene resin was characterized by X-ray diffraction, transmission electron microscopy, stress-strain measurements in elongation.
基金Project (No. 71-088/2007) supported by Program "Partnerships in Priority Areas", the Romanian Ministry of Education and Research
文摘We present an empirical model for the effective thermal conductivity (ETC) of a polymer composite that includes dependency on the filler size distribution-chosen as the Rosin-Rammler distribution. The ETC is determined based on certain hypotheses that connect the behavior of a real composite material A, to that of a model composite material B, filled with mono-dimensional filler. The application of these hypotheses to the Maxwell model for ETC is presented. The validation of the new model and its characteristic equation was carried out using experimental data from the reference. The comparison showed that by using the size distribution law a very good fit between the equation of the new model (the size distribution model for the ETC) and the reference experimental results is obtained, even for high volume fractions, up to about 50%.