期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
三元聚合电解质改性碳酸钙及其在造纸中的应用 被引量:3
1
作者 陈南男 王立军 +2 位作者 黄珏 田清泉 姚献平 《浙江科技学院学报》 CAS 2017年第5期353-357,共5页
利用阴离子聚丙烯酰胺(APAM)、阳离子淀粉(CSt)和阳离子聚丙烯酰胺(CPAM)形成聚合电解质复合物并自发沉积包覆在造纸用研磨碳酸钙(GCC)表面,同时引起填料预絮聚从而完成填料的改性;将改性后的填料用于纸张加填并探究其对纸张物理性能的... 利用阴离子聚丙烯酰胺(APAM)、阳离子淀粉(CSt)和阳离子聚丙烯酰胺(CPAM)形成聚合电解质复合物并自发沉积包覆在造纸用研磨碳酸钙(GCC)表面,同时引起填料预絮聚从而完成填料的改性;将改性后的填料用于纸张加填并探究其对纸张物理性能的影响。结果表明:相比于未改性的碳酸钙,经APAM/CSt/CPAM三元体系改性的碳酸钙,平均弦长增大为初始填料的9倍,其加填纸的成纸灰分提高了2.2倍(灰分含量达到16.32%),且纸张的抗张强度维持不变。 展开更多
关键词 碳酸钙 聚合电解质复合物 灰分 强度性能
下载PDF
填料包覆预絮聚改性技术及其对纸张性能的影响 被引量:8
2
作者 陈南男 王立军 +2 位作者 姚献平 赵文彦 文俊超 《中国造纸》 CAS 北大核心 2018年第12期8-13,共6页
采用阴离子聚丙烯酰胺(APAM)、阳离子淀粉(CSt)和阳离子聚丙烯酰胺(CPAM)对碳酸钙(CaCO_3)填料进行包覆预絮聚改性,制备包覆预絮聚改性填料(CaCO_3-APAM-CSt-CPAM),并将其与仅采用絮凝剂改性的预絮聚改性填料(CaCO_3-CPAM)相比较。结果... 采用阴离子聚丙烯酰胺(APAM)、阳离子淀粉(CSt)和阳离子聚丙烯酰胺(CPAM)对碳酸钙(CaCO_3)填料进行包覆预絮聚改性,制备包覆预絮聚改性填料(CaCO_3-APAM-CSt-CPAM),并将其与仅采用絮凝剂改性的预絮聚改性填料(CaCO_3-CPAM)相比较。结果表明,相比单一的预絮聚改性技术,包覆预絮聚改性技术能显著增大填料粒径并提高填料表面正电势,从而更有效地提高填料留着;当纸张灰分含量为21%时,包覆预絮聚改性填料在提高成纸抗张强度、内结合强度和撕裂度方面比预絮聚改性填料更具有优势,包覆预絮聚填料加填纸的抗张指数和内结合强度是未改性填料加填纸的1. 88倍和1. 50倍,是预絮聚改性填料的1. 14和1. 15倍,且能更好地维持纸张的匀度。 展开更多
关键词 碳酸钙 阴离子聚丙烯酰胺 阳离子淀粉 阳离子聚丙烯酰胺 聚合电解质复合物
下载PDF
Morphology and conductivity of in-situ PEO-LiClO_4-TiO_2 composite polymer electrolyte 被引量:2
3
作者 潘春跃 冯庆 +2 位作者 王丽君 张倩 巢猛 《Journal of Central South University of Technology》 2007年第3期348-352,共5页
PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivit... PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10、5 Scm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2. 展开更多
关键词 polyethylene oxide (PEO) TIO2 composite polymer electrolyte in-situ composite CONDUCTIVITY
下载PDF
Effect of Hydrogen Reduction of Silver Ions on the Performance and Structure of New Solid Polymer Electrolyte PEI/Pebax2533/AgBF4 Composite Membranes 被引量:1
4
作者 WANG Yanbei RE N Jizhong LI Hui DENG Maicun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第6期683-690,共8页
In this paper, the effect of hydrogen reduction of silver ions on the performance and structure of new solid polymer electrolyte polyetherimide (PEI)/Pebax2533 (Polynylonl2/tetramethylene oxide block copolymer, PA1... In this paper, the effect of hydrogen reduction of silver ions on the performance and structure of new solid polymer electrolyte polyetherimide (PEI)/Pebax2533 (Polynylonl2/tetramethylene oxide block copolymer, PA12-PTMO)/AgBF4 composite membranes is investigated. For PEI/Pebax2533/AgBF4 composite membranesprepared with dillerent AgBF4 concentration, the permeances of propylene and ethylene increase with the increase of AgBF4 concentration due to the carrier-facilitated transport, resulting in a high selectivity. But for propyl- ene/propane mixture, the mixed-gas selectivity is lower than its ideal selectivity. The hydrogen reduction strongly influences the membrane performance, which causes the decrease of propylene permeance and the increase of pro-pane permeance. With the increase of hydrogen reduction time, the membranes show a clearly color change from white to brown, yielding a great selectivity loss. The data of X-ray diffraction and FT-IR prove that silver ions are reduced to Ago after hydrogen reduction, and aggregated on the surface of PEI/Pebax2533/AgBF4 composite mem- branes. 展开更多
关键词 solid polymer electrolyte membrane hydrogen reduction of silver ions facilitated transport olefin/paraffin separation
下载PDF
Preparation and properties of composite polymer electrolyte modified with nano-size rare earth oxide 被引量:1
5
作者 肖围 李新海 +3 位作者 郭华军 王志兴 杨波 吴贤文 《Journal of Central South University》 SCIE EI CAS 2012年第12期3378-3384,共7页
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) modified with CeO2, La2O3 and Y2O3 nano-rare earth oxides was prepared by phase inversion technique. Physical... Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) modified with CeO2, La2O3 and Y2O3 nano-rare earth oxides was prepared by phase inversion technique. Physical and chemical properties of the modified CPEs were studied by SEM, TG-DSC and electrochemical methods. The results show that the CPE modified with 10% La2O3 (mass fraction) has the best practical applicability, which indicates that the thermal and electrochemical stability can reach over 400 ℃ and 4.5 V, respectively, and temperature dependence of ionic conductivity follows Vogel-Tamman-Fulcher (VTF) relationship and ionic conductivity at room temperature is up to 3.3 mS/cm. The interfacial resistance Ri reaches a stable value about 557 Ω after 6 d storage. 展开更多
关键词 poly(vinylidene fluoride-co-hexafluoropropylene) composite polymer electrolyte nano-rare earth oxide lithium ionpolymer battery
下载PDF
Mg2+-ion Conducting Polymer Electrolytes: Materials Characterization and All-Solid-State Battery Performance Studies
6
作者 Rakesh Chandra Agrawal Dinesh Kumar Sahu 《Journal of Physical Science and Application》 2013年第1期9-17,共9页
For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal el... For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal electrode. Present paper reports fabrication of All-Solid-State battery based on the following Mg2+-ion conducting nano composite polymer electrolyte (NCPE) films: [85PEO: 15Mg(C104)2] + 5% TiO2 (〈 100 nm), [85PEO: 15Mg(CIO4)2] + 3% SiO2(-8 nm). [85PEO: 15Mg(CIO4)2] + 3% MgO (〈 100 nm), [85PEO:15Mg(C1O4)2] + 3% MgO (-44 μm). NCPE films were prepared by hot-press technique. Solid Polymer Electrolyte (SPE) composition: [85PEO: 15Mg(CIO4)2], identified as high conducting film at room temperature, has been used as ISt--phase host and nano/micro particles of active (MgO)/passive (SiO2, TiO2) fillers as IInd-phase dispersoid. Filler particle dependent conductivity studies identified above mentioned NCPE films as optimum conducting composition (OCC) at room temperature. Ion transport behavior of SPE/NCPE film materials was investigated previously. Present paper reports materials characterization and cell performance studies on All-Solid-State batteries: Mg (Anode) Ⅱ SPE or NCPE films tt C+MnO2+Electrolyte (Cathode). Open circuit voltage (OCV) obtained was in the range: 1.79-1.92 V. The batteries were discharged at room temperature under different load conditions and some important battery parameters have been evaluated from plateau region of cell-potential discharge profiles. All the batteries performed quite satisfactorily specially under low current drain states. 展开更多
关键词 Solid polymer electrolyte (SPE) nano composite polymer electrolyte (NCPE) hot-press technique all-solid-state batteries.
下载PDF
Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte 被引量:5
7
作者 Jiulin Hu Keyi Chen +1 位作者 Zhenguo Yao Chilin Li 《Science Bulletin》 SCIE EI CSCD 2021年第7期694-707,M0004,共15页
Pursuing all-solid-state lithium metal batteries with dual upgrading of safety and energy density is of great significance. However, searching compatible solid electrolyte and reversible conversion cathode is still a ... Pursuing all-solid-state lithium metal batteries with dual upgrading of safety and energy density is of great significance. However, searching compatible solid electrolyte and reversible conversion cathode is still a big challenge. The phase transformation at cathode and Li deformation at anode would usually deactivate the electrode-electrolyte interfaces. Herein, we propose an all-solid-state Li-FeF_(3) conversion battery reinforced by hierarchical microsphere stacked polymer electrolyte for the first time. This gC_(3)N_(4) stuffed polyethylene oxide(PEO)-based electrolyte is lightweight due to the absence of metal element doping, and it enables the spatial confinement and dissolution suppression of conversion products at soft cathode-polymer interface, as well as Li dendrite inhibition at filler-reinforced anode-polymer interface. Two-dimensional(2 D)-nanosheet-built porous g-C_(3)N_(4) as three-dimensional(3 D) textured filler can strongly cross-link with PEO matrix and Li TFSI(TFSI: bistrifluoromethanesulfonimide) anion, leading to a more conductive and salt-dissociated interface and therefore improved conductivity(2.5×10^(-4) S/cm at 60℃) and Li+transference number(0.69). The compact stacking of highly regular robust microspheres in polymer electrolyte enables a successful stabilization and smoothening of Li metal with ultra-long plating/striping cycling for at least 10,000 h. The corresponding Li/LiFePO_(4) solid cells can endure an extremely high rate of 12 C. All-solid-state Li/FeF_(3) cells show highly stabilized capacity as high as 300 m Ah/g even after 200 cycles and of 200 m Ah/g at extremely high rate of 5 C, as well as ultra-long cycling for at least 1200 cycles at 1 C. High pseudocapacitance contribution(>55%) and diffusion coefficient(as high as10^(-12) cm^(2)/s) are responsible for this high-rate fluoride conversion. This result provides a promising solution to conversion-type Li metal batteries of high energy and safety beyond Li-S batteries, which are difficult to realize true "all-solid-state" due to the indispensable step of polysulfide solid-liquid conversion. 展开更多
关键词 All-solid-state batteries Conversion fluoride cathode Li dendrite suppression Polymer electrolyte C-N filler reinforcement
原文传递
Modulating composite polymer electrolyte by lithium closo-borohydride achieves highly stable solid-state battery at 25℃ 被引量:1
8
作者 Kepan Bao Yuepeng Pang +3 位作者 Junhe Yang Dalin Sun Fang Fang Shiyou Zheng 《Science China Materials》 SCIE EI CAS CSCD 2022年第1期95-104,共10页
Rational composite design is highly important for the development of high-performance composite polymer electrolytes(CPEs)for solid-state lithium(Li)metal batteries.In this work,Li closo-borohydride,Li_(2)B_(12)H_(12)... Rational composite design is highly important for the development of high-performance composite polymer electrolytes(CPEs)for solid-state lithium(Li)metal batteries.In this work,Li closo-borohydride,Li_(2)B_(12)H_(12),is introduced to poly(vinylidene fluoride)-Li-bis-(trifluoromethanesulfonyl)imide(PVDF-LiTFSI)with a bound N-methyl pyrrolidone plasticizer to form a novel CPE.This CPE shows superb Li^(+)conduction properties,as evidenced by its conductivity of 1.43×10^(-4) S cm^(-1) and Li^(+)transference number of 0.34 at 25℃.Density functional theory calculations reveal that Li_(2)B_(12)H_(12),which features electron-deficient multicenter bonds,can facilitate the dissociation of LiTFSI and enhance the immobilization of TFSI to improve the Li^(+)conduction properties of the CPE.Moreover,the fabricated CPE exhibits excellent electrochemical,thermal,and mechanical stability.The addition of Li_(2)B_(12)H_(12) can help form a protective layer at the anode/electrolyte interface,thereby preventing unwanted reactions.The above benefits of the fabricated CPE contribute to the high compatibility of the electrode.Symmetric Li cells can be stably cycled at 0.2mA cm^(-2) for over 1200 h,and Li||LiFePO_(4) cells can deliver a reversible specific capacity of 140mAh g^(-1) after 200 cycles at 1C at 25℃ with a capacity retention of 98%. 展开更多
关键词 lithium closo-borohydride composite polymer electrolytes lithium dendrite solid-state lithium batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部