针对在复杂场景下,聚合通道特征(ACF)的行人检测算法存在检测精度较低、误检率较高的问题,提出一种结合纹理和轮廓特征的多通道行人检测算法。算法由训练分类器和检测两部分组成。在训练阶段,首先提取ACF特征、局部二值模式(LBP)纹理特...针对在复杂场景下,聚合通道特征(ACF)的行人检测算法存在检测精度较低、误检率较高的问题,提出一种结合纹理和轮廓特征的多通道行人检测算法。算法由训练分类器和检测两部分组成。在训练阶段,首先提取ACF特征、局部二值模式(LBP)纹理特征和ST(Sketch Tokens)轮廓特征,然后对提取的三类特征均采用Real Ada Boost分类器进行训练;在检测阶段,应用了级联检测的思想,初期使用ACF分类器处理所有实例,保留下来的少数实例应用复杂的LBP及ST分类器进行逐次筛选。实验采用INRIA数据集对算法进行仿真,该算法的平均对数漏检率为13.32%,与ACF算法相比平均对数漏检率降低了3.73个百分点。实验结果表明LBP特征与ST特征能有对ACF特征进行信息互补,从而在复杂场景下去掉部分误判,提高了行人检测的精度,同时应用级联检测保证了多特征算法的计算效率。展开更多
文摘针对在复杂场景下,聚合通道特征(ACF)的行人检测算法存在检测精度较低、误检率较高的问题,提出一种结合纹理和轮廓特征的多通道行人检测算法。算法由训练分类器和检测两部分组成。在训练阶段,首先提取ACF特征、局部二值模式(LBP)纹理特征和ST(Sketch Tokens)轮廓特征,然后对提取的三类特征均采用Real Ada Boost分类器进行训练;在检测阶段,应用了级联检测的思想,初期使用ACF分类器处理所有实例,保留下来的少数实例应用复杂的LBP及ST分类器进行逐次筛选。实验采用INRIA数据集对算法进行仿真,该算法的平均对数漏检率为13.32%,与ACF算法相比平均对数漏检率降低了3.73个百分点。实验结果表明LBP特征与ST特征能有对ACF特征进行信息互补,从而在复杂场景下去掉部分误判,提高了行人检测的精度,同时应用级联检测保证了多特征算法的计算效率。