In this paper, we propose two methods to enhance the synchronizability of a class of complex networks which do not hold the positive correlation between betweenness centrality (BC) and degree of a node, and observe ...In this paper, we propose two methods to enhance the synchronizability of a class of complex networks which do not hold the positive correlation between betweenness centrality (BC) and degree of a node, and observe other topology characteristics of the network affected by the methods. Numerical simulations show that both methods can effectively enhance the synchronizability of this kind of networks. Furthermore, we show that the maximal BC of all edges is an important factor to affect the network synchronizability, although it is not the unique factor.展开更多
Many efforts have been made to develop time division multiple access (TDMA) slots allocation in a multi-hop converge-cast wireless sensor network (WSN), however, most of them either use complex algorithm or concer...Many efforts have been made to develop time division multiple access (TDMA) slots allocation in a multi-hop converge-cast wireless sensor network (WSN), however, most of them either use complex algorithm or concern frames only without simultaneous transmission in a single slot. In this paper, we present a timeslot assignment scheme for cluster-tree-based TDMA WSN, co:'ering three frequently used working modes in practical applications. The shortest frame formed can guarantee real-time conununication and is also facilitated for message and slot integration, since timeslots allocated to a single node are continuous. During allocation processes, the algorithms are distributed and light-weighted. The experiment resulted from a WSN prototype system shows that our scheme can achieve a good reliability.展开更多
An important problem constraining the practical implementation of robust watermarking technology is the low robustness of existing algorithms against geometrical distortions. An adaptive blind watermarking scheme util...An important problem constraining the practical implementation of robust watermarking technology is the low robustness of existing algorithms against geometrical distortions. An adaptive blind watermarking scheme utilizing neural network for synchronization is proposed in this paper,which allows to recover watermark even if the image has been subjected to generalized geometrical transforms. Through classification of image’s brightness, texture and contrast sensitivity utilizing fuzzy clustering theory and human visual system, more robust watermark is adaptively embedded in DWT domain. In order to register rotation, scaling and translation parameters, feedforward neural network is utilized to learn image geometric pattern represented by six combined low order image moments. The distortion can be inverted after determining the affine distortion applied to the image and watermark can be extracted in a standard way without original image. It only needs a trained neural network. Experimental results demonstrate its advantages over previous method in terms of computational effectiveness and parameter estimation accuracy. It can embed more robust watermark under certain visual distance, and effectively resist JPEG compression, noise and geometric attacks.展开更多
In this article, we propose a novel, multilevel, dynamic factor model, to determine endogenously clustered regions for the investigation of regional clustering and synchronization of provincial business fluctuations i...In this article, we propose a novel, multilevel, dynamic factor model, to determine endogenously clustered regions for the investigation of regional clustering and synchronization of provincial business fluctuations in China. The parameter identification and model estimation was conducted using the Markov Chain Monte Carlo method. We then conducted an empirical study of the provincial business fluctuations in China(31 Chinese provinces are considered except Hong Kong, Macao, and Taiwan due to the data unavailability), which were sampled from January 2000 to December 2015. Our results indicated that these provinces could be clustered into four regions: leading, coincident, lagging, and overshooting. In comparison with traditional geographical divisions, this novel clustering into four regions enabled the regional business cycle synchronization to be more accurately captured. Within the four regional clusters it was possible to identify substantial heterogeneities among regional business cycle fluctuations, especially during the periods of the 2008 financial crisis and the ‘four-trillion economic stimulus plan'.展开更多
Using a tunable clustering coeffcient model withoutchanging the degree distribution, we investigate the effect of clustering coefficient on synchronization of networks with both unweighted and weighted couplings. For ...Using a tunable clustering coeffcient model withoutchanging the degree distribution, we investigate the effect of clustering coefficient on synchronization of networks with both unweighted and weighted couplings. For several typical categories of complex networks, the more triangles are in the networks, the worse the synchronizability of the networks is.展开更多
The construction of novel inorganic‐organic hybrid nanomaterials for synchronous photocatalyticremoval of heavy metal ions and organic pollutants has received significant attention.We successfullysynthesized gold‐lo...The construction of novel inorganic‐organic hybrid nanomaterials for synchronous photocatalyticremoval of heavy metal ions and organic pollutants has received significant attention.We successfullysynthesized gold‐loaded graphene oxide/PDPB(polymer poly(diphenylbutadiyne))composites(Au‐GO/PDPB)through a facile mechanical agitation and photoreduction method.The compositeswere characterized by XPS and TEM images,which confirmed the presence of GO and Au nanoparticleson the PDPB.The as‐prepared Au‐GO/PDPB composites displayed enhanced photocatalytic activity compared with that of pure PDPB for the synchronous photoreduction of hexavalent chromium(Cr(VI))and photo‐oxidation of phenol.We also determined the optimal loading mass of GO and Au nanoparticles on the PDPB;the Au1‐GO2/PDPB(2.0wt%GO and1.0wt%Au)composite displayed the best photocatalytic activity among all the catalysts.Our study provides a facile way to prepare inorganic‐organic composites for the synchronous photocatalytic removal of heavy metal ions and organic pollutants.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
The authors synthesized very pure dimer phase of coroneae by simple heat-treatment and subsequent sublimation purification. It was confirmed by laser desorption/ionization mass spectroscopy measurements that pure dime...The authors synthesized very pure dimer phase of coroneae by simple heat-treatment and subsequent sublimation purification. It was confirmed by laser desorption/ionization mass spectroscopy measurements that pure dimer phase of coronenes can be obtained by controlling the fusing and sublimation temperatures. The crystal structure of the dimer phase was analyzed by synchrotron XRD (X-ray diffraction) experiments. It was also found that very bright red light is emitted by irradiating ultra violet light (λ = 350 nm) to the dimer phase. The external and internal quantum yields were determined to be 5.56% and 6.95%, respectively.展开更多
Stimulated emission depletion(STED) microscope is one of the most prominent super-resolution bio-imaging instruments, which holds great promise for ultrahigh-resolution imaging of cells. To construct a STED microscope...Stimulated emission depletion(STED) microscope is one of the most prominent super-resolution bio-imaging instruments, which holds great promise for ultrahigh-resolution imaging of cells. To construct a STED microscope, it is challenging to realize temporal synchronization between the excitation pulses and the depletion pulses. In this study, we present a simple and low-cost method to achieve pulse synchronization by using a condensed fluorescent dye as a depletion indicator. By using this method, almost all the confocal microscopes can be upgraded to a STED system without losing its original functions. After the pulse synchronization,our STED system achieved sub-100-nm resolution for fluorescent nanospheres and single-cell imaging.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos.70431002 and 60674045
文摘In this paper, we propose two methods to enhance the synchronizability of a class of complex networks which do not hold the positive correlation between betweenness centrality (BC) and degree of a node, and observe other topology characteristics of the network affected by the methods. Numerical simulations show that both methods can effectively enhance the synchronizability of this kind of networks. Furthermore, we show that the maximal BC of all edges is an important factor to affect the network synchronizability, although it is not the unique factor.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2006AA040302 2007AA041201 +1 种基金 2007AA041301 )the National Creative Research Groups Science Foundation of China (No. 60721062)
文摘Many efforts have been made to develop time division multiple access (TDMA) slots allocation in a multi-hop converge-cast wireless sensor network (WSN), however, most of them either use complex algorithm or concern frames only without simultaneous transmission in a single slot. In this paper, we present a timeslot assignment scheme for cluster-tree-based TDMA WSN, co:'ering three frequently used working modes in practical applications. The shortest frame formed can guarantee real-time conununication and is also facilitated for message and slot integration, since timeslots allocated to a single node are continuous. During allocation processes, the algorithms are distributed and light-weighted. The experiment resulted from a WSN prototype system shows that our scheme can achieve a good reliability.
基金the National High Technology Research and Development Program of China(Grant No. 2001AA422420-02).
文摘An important problem constraining the practical implementation of robust watermarking technology is the low robustness of existing algorithms against geometrical distortions. An adaptive blind watermarking scheme utilizing neural network for synchronization is proposed in this paper,which allows to recover watermark even if the image has been subjected to generalized geometrical transforms. Through classification of image’s brightness, texture and contrast sensitivity utilizing fuzzy clustering theory and human visual system, more robust watermark is adaptively embedded in DWT domain. In order to register rotation, scaling and translation parameters, feedforward neural network is utilized to learn image geometric pattern represented by six combined low order image moments. The distortion can be inverted after determining the affine distortion applied to the image and watermark can be extracted in a standard way without original image. It only needs a trained neural network. Experimental results demonstrate its advantages over previous method in terms of computational effectiveness and parameter estimation accuracy. It can embed more robust watermark under certain visual distance, and effectively resist JPEG compression, noise and geometric attacks.
基金Under the auspices of the National Natural Science Foundation of China(No.71371160)the Program for Changjiang Youth Scholars(No.Q2016131)the Program for New Century Excellent Talents in University(No.NCET-13-0509)
文摘In this article, we propose a novel, multilevel, dynamic factor model, to determine endogenously clustered regions for the investigation of regional clustering and synchronization of provincial business fluctuations in China. The parameter identification and model estimation was conducted using the Markov Chain Monte Carlo method. We then conducted an empirical study of the provincial business fluctuations in China(31 Chinese provinces are considered except Hong Kong, Macao, and Taiwan due to the data unavailability), which were sampled from January 2000 to December 2015. Our results indicated that these provinces could be clustered into four regions: leading, coincident, lagging, and overshooting. In comparison with traditional geographical divisions, this novel clustering into four regions enabled the regional business cycle synchronization to be more accurately captured. Within the four regional clusters it was possible to identify substantial heterogeneities among regional business cycle fluctuations, especially during the periods of the 2008 financial crisis and the ‘four-trillion economic stimulus plan'.
基金The project partly supported by National Natural Science Foundation for Distinguished Young Scholars of China under Grant No. 60225013, National Natural Science Foundation of China under Grants Nos. 70271072, 70431002, and 90412004, and Shanghai RisingStar Program under Grant No.05QMX1436Author (X. Li) also acknowledges the support from the Alexander von Humboldt Foundation.
文摘Using a tunable clustering coeffcient model withoutchanging the degree distribution, we investigate the effect of clustering coefficient on synchronization of networks with both unweighted and weighted couplings. For several typical categories of complex networks, the more triangles are in the networks, the worse the synchronizability of the networks is.
基金supported by the National Natural Science Foundation of China(21577036,21377038,21237003,21677048)the National Basic Research Program of China(973 Program,2013CB632403)+1 种基金State Key Research Development Program of China(2016YFA0204200)the Fundamental Research Funds for the Central Universities(22A201514021)~~
文摘The construction of novel inorganic‐organic hybrid nanomaterials for synchronous photocatalyticremoval of heavy metal ions and organic pollutants has received significant attention.We successfullysynthesized gold‐loaded graphene oxide/PDPB(polymer poly(diphenylbutadiyne))composites(Au‐GO/PDPB)through a facile mechanical agitation and photoreduction method.The compositeswere characterized by XPS and TEM images,which confirmed the presence of GO and Au nanoparticleson the PDPB.The as‐prepared Au‐GO/PDPB composites displayed enhanced photocatalytic activity compared with that of pure PDPB for the synchronous photoreduction of hexavalent chromium(Cr(VI))and photo‐oxidation of phenol.We also determined the optimal loading mass of GO and Au nanoparticles on the PDPB;the Au1‐GO2/PDPB(2.0wt%GO and1.0wt%Au)composite displayed the best photocatalytic activity among all the catalysts.Our study provides a facile way to prepare inorganic‐organic composites for the synchronous photocatalytic removal of heavy metal ions and organic pollutants.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
文摘The authors synthesized very pure dimer phase of coroneae by simple heat-treatment and subsequent sublimation purification. It was confirmed by laser desorption/ionization mass spectroscopy measurements that pure dimer phase of coronenes can be obtained by controlling the fusing and sublimation temperatures. The crystal structure of the dimer phase was analyzed by synchrotron XRD (X-ray diffraction) experiments. It was also found that very bright red light is emitted by irradiating ultra violet light (λ = 350 nm) to the dimer phase. The external and internal quantum yields were determined to be 5.56% and 6.95%, respectively.
基金supported by the National Natural Science Foundation of China (21227804, 21390414, 61378062, 21505148)National Key Research and Development Program (2016YFA0400902)the Natural Science Foundation of Shanghai (15ZR1448400, 14ZR1448000)
文摘Stimulated emission depletion(STED) microscope is one of the most prominent super-resolution bio-imaging instruments, which holds great promise for ultrahigh-resolution imaging of cells. To construct a STED microscope, it is challenging to realize temporal synchronization between the excitation pulses and the depletion pulses. In this study, we present a simple and low-cost method to achieve pulse synchronization by using a condensed fluorescent dye as a depletion indicator. By using this method, almost all the confocal microscopes can be upgraded to a STED system without losing its original functions. After the pulse synchronization,our STED system achieved sub-100-nm resolution for fluorescent nanospheres and single-cell imaging.