Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size...Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.展开更多
The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,...The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,were studied according to the normal mean mass diameter and fractal theory.The present research showed that the stability of the soil aggregates was different for the different land use types.When the soil depth was 0-30 cm,farmland soil formed more aggregates with diameters greater than 0.25 mm,i.e.,the farmland soil was more stable than that of the other three land uses.When the soil depth was 30-45 cm,the order of stability of the soil aggregates was woodland > grassland > farmland > bare land.The fractal dimensions had a significant linear positive correlation with the amount of soil particles with diameters of <0.25 mm,and a significant negative linear correlation with the amount of soil particles with diameters of 0.25-0.5 mm,0.5-1 mm and 1-2 mm.Smaller fractal dimensions of the soil particles correlated with more stable soil aggregates.The fractal dimensions had a positive linear correlation with the soil bulk density and a negative correlation with the concentration of organic matter.These results showed that soil aggregates can be used as a parameter for characterizing the soil structures and properties.According to these results,the soil particle fractal dimensions could not only objectively characterize the stability of the soil structure but also could be used to indicate soil structure and properties.In addition,these results have great significance for the discussion of the comprehensive evaluation of soil.展开更多
Soil and water conservation is essential for sustaining food production and for preserving the environment in arid and semi arid lands (ASALs) where conditions for agriculture and other land use systems are often ha...Soil and water conservation is essential for sustaining food production and for preserving the environment in arid and semi arid lands (ASALs) where conditions for agriculture and other land use systems are often harsh and unpredictable. The ASALs of Algeria are an important source of a variety of non wood forest products like Stipa tenacissima L. plant (esparto grass). This research was conducted to determine the effects of different low concentration (〈 I%) polyacrylaJnide, Stipa tenacissima L. fiber (esparto grass fibers) and its mixtures with the polymer at water retention in arid and semi arid soil. All samples are characterized by infrared spectroscopy, X-ray Diffractometry, thermal analysis TG DSC and scanning electron micrographs (SEM). The results showed that polymer blend in soil could improve better soil physical proprieties decreased evaporation and increase water retention in arid soils compared with application of any other blend at the same concentration. The use of Polyacrylamide-Cellulose blend appears to promise for reducing the labor cost of irrigation at arid and semi-arid soils, and offers safe and environmentally friendly inexpensive materials. The importance of Polyacrylamide-Cellulose blends to alleviate poor physical properties and retain water in these arid regions to sustain plant growth.展开更多
One approach to apply precision agriculture to optimize crop production and environmental quality is identifying management zones. In this paper,the variables of soil electrical conductivity (EC) data,cotton yield dat...One approach to apply precision agriculture to optimize crop production and environmental quality is identifying management zones. In this paper,the variables of soil electrical conductivity (EC) data,cotton yield data and normalized differ-ence vegetation index (NDVI) data in an about 15 ha field in a coastal saline land were selected as data resources,and their spatial variabilities were firstly analyzed and spatial distribution maps constructed with geostatistics technique. Then fuzzy c-means clustering algorithm was used to define management zones,fuzzy performance index (FPI) and normalized classification entropy (NCE) were used to determine the optimal cluster numbers. Finally one-way variance analysis was performed on 224 georefer-enced soil and yield sampling points to assess how well the defined management zones reflected the soil properties and produc-tivity level. The results reveal that the optimal number of management zones for the present study area was 3 and the defined management zones provided a better description of soil properties and yield variation. Statistical analyses indicate significant differences between the chemical properties of soil samples and crop yield in each management zone,and management zone 3 presented the highest nutrient level and potential crop productivity,whereas management zone 1 the lowest. Based on these findings,we conclude that fuzzy c-means clustering approach can be used to delineate management zones by using the given three variables in the coastal saline soils,and the defined management zones form an objective basis for targeting soil samples for nutrient analysis and development of site-specific application strategies.展开更多
Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in ...Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in geopolymer mortars and concretes. Geopolymeric cement is an inorganic compounds of aluminosilicates synthesized from precursors with high content of silica and alumina activated by alkali silicate solutions. Geopolymer in this experiment was synthesized from fly ash as the precursor and sodium silicate solution as the activator. Hardening of geopolymers was performed by heating the casted paste in an oven at -60~Cfor 3 to 36 hours. Compressive strength of geopolymer pastes and mortars using either fresh or waste fine aggregates were in the range of 19-26 MPa. Hardening time of 3 hours at 60~C followed by leaving the test pieces at room temperature for 7 day before testing results in similar strength to that of mortars cured for 36 hours at 60~C followed by leaving the samples at room temperature for 3 days. It suggests that optimum strength can be achieved by combination of heating time and rest period before testing, i.e the specimens age. Applying mix design with a target strength of 40 MPa, conventional Portland cement concretes using fresh aggregates reached 70% of its target strength at day-7. Compressive strength of geopolymer concretes with waste aggregates was -25 MPa at day-3 while geopolymer concretes with fresh aggregates achieved -39 MPa at day-3. It can be concluded that geopolymer concretes can achieve the target strength in only 3 days. However, the expected reinforcing effect of coarse aggregates in concrete was ineffective if waste coarse aggregates were used as the strength of the concretes did not increase significantly from that of the mortars. On the other hand, waste fine aggregates can be reused for making geopolymer mortars having the same strength as the geopolymer mortars using fresh aggregates.展开更多
In many regions both urban expansion and rural development take place simultaneously, and for the purpose of understanding the dynamic process of land use/cover change (LUCC) in such large areas, this study develops...In many regions both urban expansion and rural development take place simultaneously, and for the purpose of understanding the dynamic process of land use/cover change (LUCC) in such large areas, this study develops a multi-agent based land use model. Taking the Poyang Lake area of China as a typical case, this study applies the mechanism of diffusion-limited aggregation to simulate the behavior of urban agents, while rural land use is illustrated with a bottom-up based model consisting of agent and environment layers. In the agent layer, each household agent makes its own decisions on land use, and at each time interval a government agent takes control of land use by implementing policies. According to incomes and the rate of migrant workers, household agents are divided into six categories, among which different decision rules are followed. For complex LUCC in the Poyang Lake area of China from 1985 to 2005, the artificial society model developed in this study yields results highly consistent with observations. Importantly, it is shown that governmental policies can impose significant effects on the decisions of individual household agents on land use and the multi-agent-based land use model developed in this study provides a robust means for assessing the effectiveness of governmental policies.展开更多
基金Project(2009CB623201) supported by the National Basic Research Program of ChinaProject(G0510) supported by the Key Laboratory for Refractories and High-temperature Ceramics of Hubei Province, China
文摘Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.
基金supported by the Research Fund for Commonweal Trades Meteorology (Grant No. GYHY201006039)the Starting fund fordoctoral research of Neijiang Normal University(Grant No.09249)
文摘The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,were studied according to the normal mean mass diameter and fractal theory.The present research showed that the stability of the soil aggregates was different for the different land use types.When the soil depth was 0-30 cm,farmland soil formed more aggregates with diameters greater than 0.25 mm,i.e.,the farmland soil was more stable than that of the other three land uses.When the soil depth was 30-45 cm,the order of stability of the soil aggregates was woodland > grassland > farmland > bare land.The fractal dimensions had a significant linear positive correlation with the amount of soil particles with diameters of <0.25 mm,and a significant negative linear correlation with the amount of soil particles with diameters of 0.25-0.5 mm,0.5-1 mm and 1-2 mm.Smaller fractal dimensions of the soil particles correlated with more stable soil aggregates.The fractal dimensions had a positive linear correlation with the soil bulk density and a negative correlation with the concentration of organic matter.These results showed that soil aggregates can be used as a parameter for characterizing the soil structures and properties.According to these results,the soil particle fractal dimensions could not only objectively characterize the stability of the soil structure but also could be used to indicate soil structure and properties.In addition,these results have great significance for the discussion of the comprehensive evaluation of soil.
文摘Soil and water conservation is essential for sustaining food production and for preserving the environment in arid and semi arid lands (ASALs) where conditions for agriculture and other land use systems are often harsh and unpredictable. The ASALs of Algeria are an important source of a variety of non wood forest products like Stipa tenacissima L. plant (esparto grass). This research was conducted to determine the effects of different low concentration (〈 I%) polyacrylaJnide, Stipa tenacissima L. fiber (esparto grass fibers) and its mixtures with the polymer at water retention in arid and semi arid soil. All samples are characterized by infrared spectroscopy, X-ray Diffractometry, thermal analysis TG DSC and scanning electron micrographs (SEM). The results showed that polymer blend in soil could improve better soil physical proprieties decreased evaporation and increase water retention in arid soils compared with application of any other blend at the same concentration. The use of Polyacrylamide-Cellulose blend appears to promise for reducing the labor cost of irrigation at arid and semi-arid soils, and offers safe and environmentally friendly inexpensive materials. The importance of Polyacrylamide-Cellulose blends to alleviate poor physical properties and retain water in these arid regions to sustain plant growth.
基金Project supported by the National Natural Science Foundation of China (Nos. 40701007 and 40571066)the Postdoctoral Science Foundation of China (No. 20060401048)
文摘One approach to apply precision agriculture to optimize crop production and environmental quality is identifying management zones. In this paper,the variables of soil electrical conductivity (EC) data,cotton yield data and normalized differ-ence vegetation index (NDVI) data in an about 15 ha field in a coastal saline land were selected as data resources,and their spatial variabilities were firstly analyzed and spatial distribution maps constructed with geostatistics technique. Then fuzzy c-means clustering algorithm was used to define management zones,fuzzy performance index (FPI) and normalized classification entropy (NCE) were used to determine the optimal cluster numbers. Finally one-way variance analysis was performed on 224 georefer-enced soil and yield sampling points to assess how well the defined management zones reflected the soil properties and produc-tivity level. The results reveal that the optimal number of management zones for the present study area was 3 and the defined management zones provided a better description of soil properties and yield variation. Statistical analyses indicate significant differences between the chemical properties of soil samples and crop yield in each management zone,and management zone 3 presented the highest nutrient level and potential crop productivity,whereas management zone 1 the lowest. Based on these findings,we conclude that fuzzy c-means clustering approach can be used to delineate management zones by using the given three variables in the coastal saline soils,and the defined management zones form an objective basis for targeting soil samples for nutrient analysis and development of site-specific application strategies.
文摘Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in geopolymer mortars and concretes. Geopolymeric cement is an inorganic compounds of aluminosilicates synthesized from precursors with high content of silica and alumina activated by alkali silicate solutions. Geopolymer in this experiment was synthesized from fly ash as the precursor and sodium silicate solution as the activator. Hardening of geopolymers was performed by heating the casted paste in an oven at -60~Cfor 3 to 36 hours. Compressive strength of geopolymer pastes and mortars using either fresh or waste fine aggregates were in the range of 19-26 MPa. Hardening time of 3 hours at 60~C followed by leaving the test pieces at room temperature for 7 day before testing results in similar strength to that of mortars cured for 36 hours at 60~C followed by leaving the samples at room temperature for 3 days. It suggests that optimum strength can be achieved by combination of heating time and rest period before testing, i.e the specimens age. Applying mix design with a target strength of 40 MPa, conventional Portland cement concretes using fresh aggregates reached 70% of its target strength at day-7. Compressive strength of geopolymer concretes with waste aggregates was -25 MPa at day-3 while geopolymer concretes with fresh aggregates achieved -39 MPa at day-3. It can be concluded that geopolymer concretes can achieve the target strength in only 3 days. However, the expected reinforcing effect of coarse aggregates in concrete was ineffective if waste coarse aggregates were used as the strength of the concretes did not increase significantly from that of the mortars. On the other hand, waste fine aggregates can be reused for making geopolymer mortars having the same strength as the geopolymer mortars using fresh aggregates.
基金Chinese R&D Program of "Development of a comprehensive monitoring and evaluation system for ecological compensation of typical ecologically vulnerable regions of China (2006BAC08B06)"National Science Fund for Distinguished Young Scholars (40788001)One Hundred Talents Program of the Chinese Academy of Sciences
文摘In many regions both urban expansion and rural development take place simultaneously, and for the purpose of understanding the dynamic process of land use/cover change (LUCC) in such large areas, this study develops a multi-agent based land use model. Taking the Poyang Lake area of China as a typical case, this study applies the mechanism of diffusion-limited aggregation to simulate the behavior of urban agents, while rural land use is illustrated with a bottom-up based model consisting of agent and environment layers. In the agent layer, each household agent makes its own decisions on land use, and at each time interval a government agent takes control of land use by implementing policies. According to incomes and the rate of migrant workers, household agents are divided into six categories, among which different decision rules are followed. For complex LUCC in the Poyang Lake area of China from 1985 to 2005, the artificial society model developed in this study yields results highly consistent with observations. Importantly, it is shown that governmental policies can impose significant effects on the decisions of individual household agents on land use and the multi-agent-based land use model developed in this study provides a robust means for assessing the effectiveness of governmental policies.