UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl...UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl acrylate (HEA), polyethyleneglycol (PEG-200)and nano-SiO2. The UV curing kinetics of the films was investigated by FTIR. The results show that the curing speed of the films increases with the adding of nano-SiO2 and decreases with the adding of PUDA due to the slower chain movement. The thermal stability of the HBPUA-PUDA/SiO2 films was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR). The results show that all films exhibit two degradation stages located at about 320 and 440℃ corresponding to the degradation for hard segments of urethane-acrylate and the degradation for soft segment and polyester core. In addition, the results from the analysis of TGA/FTIR also indicate that the decomposition temperature of HBPUA-PUDA/SiO2 film is 15℃ higher than that obtained for pure polymer. The degradation mechanism was proposed according to TGA/FTIR results.展开更多
Polyaspartic acid(PASP)is suitable for the inhibition of scale deposition from water.To enhance its in- hibition efficiency,PASP was modified by reacting aspartic acid(Asp)with glutamic acid(Glu)to provide Asp-Glu cop...Polyaspartic acid(PASP)is suitable for the inhibition of scale deposition from water.To enhance its in- hibition efficiency,PASP was modified by reacting aspartic acid(Asp)with glutamic acid(Glu)to provide Asp-Glu copolymer under microwave irradiation.The influence of reaction parameters on conversion,molecular weight and inhibition of CaCO3 precipitation was investigated Infra-red.(IR), 1H nuclear magnetic resonance( 1H NMR)and 13C nuclear magnetic resonance( 13C NMR)spectroscopies were used to characterize the copolymer.The results show that copolymerization of aspartic acid and glutamic acid is catalyzed by a small amount of phosphorous acid (H3PO4)in solvent,the product conversion is 98.05%under the following conditions:the molar ratio of glutamic acid to reactant[Glu/(Asp+Glu)]is 0.3 and that of catalyst(Cat)to reactant[Cat/(Glu+Asp)]is 0.05(0.65ml H3PO4),the volume of solvent dimethylformamide is 16ml,the microwave power used is 720W and the reaction for 3 min.The weight average molecular weight of copolymer synthesized under these conditions is 2709 and the inhi- bition rate for CaCO3 is 97.75%.展开更多
Increasing demand is fueling the booming polyurethane industry worldwide. An impeding issue for poly- urethane industry is how to handle the large quantity of hydrogen chloride byproduct generated from the synthesis o...Increasing demand is fueling the booming polyurethane industry worldwide. An impeding issue for poly- urethane industry is how to handle the large quantity of hydrogen chloride byproduct generated from the synthesis of intermediates, i.e., isocyanates. In the meantime, the traditional chloro-alkaline process sufibrs both from the high en- ergy intensity of electrolysis method and the disparity in the chlorine and caustic soda market. To solve these prob- lems, the state-of-the-art chlorine recycling technologies are reviewed and compared. Approaches for cost-effective utilization of chlorine in polyurethane industry are investigated. Chinese academies and enterprises' on-going effort on the development of a novel hydrogen chloride oxidation process for the synthesis of chlorine is presented. With this process, the closed loop recycling of chlorine can be realized. Tremendous economic, environmental and social bene- fits can be expected. A wide adoption of this technology will significantly advance the sustainable development of polyurethane industry.展开更多
The surface modification of the anionic polyurethane(APU)film was carried out by immersing it in silk fibroin peptide(SFP)solution for 12 h and then treating with low temperature plasma glow discharge.The physical pro...The surface modification of the anionic polyurethane(APU)film was carried out by immersing it in silk fibroin peptide(SFP)solution for 12 h and then treating with low temperature plasma glow discharge.The physical properties and moisture permeability of modified films were examined.The results showed that SFP-modified APU films had better moisture permeability than oleophilic polyurethane,as well as modified APU films kept good flexibility.Modified APU films could overcome rigid and brittle weaks of silk fibroin films.The morphology of SFP on the APU film was corpuscular aggregations.The water-contact angle measurement indicated that the change of hydrophilicity and the element chemical analysis suggested that the SFP-modified film surface was enriched with nitrogen atoms.The biocompatibility of APU films may be improved due to the change of surface components.Cell viability and proliferation of rat embryo dermal fibroblasts seeded on control films,APU films and SFP-modified APU films were evaluated by MTT assay and viable cell counts,respectively.The results indicated that the APU film modified by SFP protein showed the proliferation of fibroblasts on the film,and that the compound interface had good stability in the air.Results also showed that presoaking treatment for APU films was effective to accomplish the goal of surface modification.展开更多
To overcome the main barrier of intestinal epithelium for the oral absorption of poorly water-soluble drugs and further improve their oral absorption, Gly-Sar, the substrate of the oligopeptide transporter PepT1 widel...To overcome the main barrier of intestinal epithelium for the oral absorption of poorly water-soluble drugs and further improve their oral absorption, Gly-Sar, the substrate of the oligopeptide transporter PepT1 widely distributed in the small intestine,conjugated poly(ethylene glycol)-block-poly(D,L-lactide)(Gly-Sar-PEG-b-PLA) was designed and synthesized, and Pep T1-targeted polymeric micelles were prepared and characterized. The structure of the synthesized Gly-Sar-PEG-b-PLA was confirmed by use of TLC and 1 H-NMR. The average molecular weight measured by GPC was 5954 g/mol with PDI of 1.34. The DiI-loaded polymeric micelles from Gly-Sar-PEG-b-PLA with drug loading content of 0.076% were characterized to exhibit 40.36 nm in diameter with PDI of 0.294, and well-defined spherical shape observed by TEM. Furthermore, the PepT1-targeted polymeric micelles profoundly enhanced intestinal absorption of poorly water-soluble drug. Therefore, the designed PepT1-targeted polymeric micelles might have a promising potential for oral delivery of water-insoluble drugs.展开更多
Many pH-and temperature-responsive polymers have been designed for preparing hydrogel.In the present study,in order to decrease the pH sensitivity of reported poly(amidoamine)-poly(ethyleneglycol)-poly(amidoamine)(PAA...Many pH-and temperature-responsive polymers have been designed for preparing hydrogel.In the present study,in order to decrease the pH sensitivity of reported poly(amidoamine)-poly(ethyleneglycol)-poly(amidoamine)(PAA1580-PEG4600-PAA1580),we designed and synthesized poly(amidoamine)-poly(ethyleneglycol)-poly(amidoamine)(PAA-PEG-PAA)with shorter length of PAA chain by decreasing reaction temperature for preparing PAA-PEG-PAA hydrogel solution containing doxorubicin(DOX).The PAA-PEG-PAA was synthesized via the Michael-addition polymerization.The characteristic of PAA-PEG-PAA was evaluated.The PAA-PEG-PAA hydrogel solution was prepared and investigated.DOX-loaded PAA-PEG-PAA hydrogel solution was prepared,and its in vitro DOX release and in vitro anti-tumor activity were evaluated.Our results indicated that the viscosity of PAA-PEG-PAA hydrogel solution was concentration-and temperature-dependent.The sol-gel transition temperature of PAA-PEG-PAA hydrogel solution(12%,w/w)ranged from 35 to 29℃,and its pH ranged from 6.0 to 7.4.The released DOX from DOX-loaded PAA-PEG-PAA hydrogel showed sustained release characteristics.The in vitro anti-tumor activity of DOX-loaded PAA-PEG-PAA hydrogel was confirmed in B16 F10 cell line.Considering the acidic tumor microenvironment,this DOX-loaded PAA-PEG-PAA hydrogel solution would be easy in situ administration for intra-tumor injection or para-tumor injection forming hydrogel at body temperature.We suggested that this DOX-loaded PAA-PEG-PAAhydrogel solution,if containing photothermal conversion agents,would have a potential further use for photothermal therapy.展开更多
In this work,azobenzene-containing polyurethane liquid crystal networks(PULCN(AZO)s)were synthesized using a one-pot strategy to demonstrate excellent two-way free-standing thermo-/photo-responsive shape memory effect...In this work,azobenzene-containing polyurethane liquid crystal networks(PULCN(AZO)s)were synthesized using a one-pot strategy to demonstrate excellent two-way free-standing thermo-/photo-responsive shape memory effects.Based on the step-growth nature of hydroxyls and isocyanates,the architectures of the networks were adjusted by controlling the stoichiometries of chemical materials.A uniform monodomain sample was prepared by external stress relaxation via a reversible addition reaction of a dynamic carbamate bond.Two independent transition temperatures assigned to glass transition temperature/melting temperature and liquid crystal phase transition temperature were employed to thermally trigger triple shape memory effects and two-way autonomous actuation.In addition,taking advantage of the trans-cis photoisomerization of azobenzene,the programmed network showed a reversible bending and unbending shape change upon irradiation by visible light at450 and 550 nm,respectively.Coupling the autonomously thermo-induced contraction/extension actuation and reversible photo-induced bending/unbending behaviors of PULCN(AZO)s in one system will expand their potential applications in emerging multifunctional devices.展开更多
文摘UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl acrylate (HEA), polyethyleneglycol (PEG-200)and nano-SiO2. The UV curing kinetics of the films was investigated by FTIR. The results show that the curing speed of the films increases with the adding of nano-SiO2 and decreases with the adding of PUDA due to the slower chain movement. The thermal stability of the HBPUA-PUDA/SiO2 films was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR). The results show that all films exhibit two degradation stages located at about 320 and 440℃ corresponding to the degradation for hard segments of urethane-acrylate and the degradation for soft segment and polyester core. In addition, the results from the analysis of TGA/FTIR also indicate that the decomposition temperature of HBPUA-PUDA/SiO2 film is 15℃ higher than that obtained for pure polymer. The degradation mechanism was proposed according to TGA/FTIR results.
基金Supported by Harbin Key Technologies R&D Program(No.2003AA4CS123).
文摘Polyaspartic acid(PASP)is suitable for the inhibition of scale deposition from water.To enhance its in- hibition efficiency,PASP was modified by reacting aspartic acid(Asp)with glutamic acid(Glu)to provide Asp-Glu copolymer under microwave irradiation.The influence of reaction parameters on conversion,molecular weight and inhibition of CaCO3 precipitation was investigated Infra-red.(IR), 1H nuclear magnetic resonance( 1H NMR)and 13C nuclear magnetic resonance( 13C NMR)spectroscopies were used to characterize the copolymer.The results show that copolymerization of aspartic acid and glutamic acid is catalyzed by a small amount of phosphorous acid (H3PO4)in solvent,the product conversion is 98.05%under the following conditions:the molar ratio of glutamic acid to reactant[Glu/(Asp+Glu)]is 0.3 and that of catalyst(Cat)to reactant[Cat/(Glu+Asp)]is 0.05(0.65ml H3PO4),the volume of solvent dimethylformamide is 16ml,the microwave power used is 720W and the reaction for 3 min.The weight average molecular weight of copolymer synthesized under these conditions is 2709 and the inhi- bition rate for CaCO3 is 97.75%.
文摘Increasing demand is fueling the booming polyurethane industry worldwide. An impeding issue for poly- urethane industry is how to handle the large quantity of hydrogen chloride byproduct generated from the synthesis of intermediates, i.e., isocyanates. In the meantime, the traditional chloro-alkaline process sufibrs both from the high en- ergy intensity of electrolysis method and the disparity in the chlorine and caustic soda market. To solve these prob- lems, the state-of-the-art chlorine recycling technologies are reviewed and compared. Approaches for cost-effective utilization of chlorine in polyurethane industry are investigated. Chinese academies and enterprises' on-going effort on the development of a novel hydrogen chloride oxidation process for the synthesis of chlorine is presented. With this process, the closed loop recycling of chlorine can be realized. Tremendous economic, environmental and social bene- fits can be expected. A wide adoption of this technology will significantly advance the sustainable development of polyurethane industry.
基金Supported by the National Basic Research 973 Programof China(No.2005CB623906)
文摘The surface modification of the anionic polyurethane(APU)film was carried out by immersing it in silk fibroin peptide(SFP)solution for 12 h and then treating with low temperature plasma glow discharge.The physical properties and moisture permeability of modified films were examined.The results showed that SFP-modified APU films had better moisture permeability than oleophilic polyurethane,as well as modified APU films kept good flexibility.Modified APU films could overcome rigid and brittle weaks of silk fibroin films.The morphology of SFP on the APU film was corpuscular aggregations.The water-contact angle measurement indicated that the change of hydrophilicity and the element chemical analysis suggested that the SFP-modified film surface was enriched with nitrogen atoms.The biocompatibility of APU films may be improved due to the change of surface components.Cell viability and proliferation of rat embryo dermal fibroblasts seeded on control films,APU films and SFP-modified APU films were evaluated by MTT assay and viable cell counts,respectively.The results indicated that the APU film modified by SFP protein showed the proliferation of fibroblasts on the film,and that the compound interface had good stability in the air.Results also showed that presoaking treatment for APU films was effective to accomplish the goal of surface modification.
基金National Natural Science Foundation of China(Grant No.81673366)the National Key Science Research Program of China(973 Program,Grant No.2015CB932100)
文摘To overcome the main barrier of intestinal epithelium for the oral absorption of poorly water-soluble drugs and further improve their oral absorption, Gly-Sar, the substrate of the oligopeptide transporter PepT1 widely distributed in the small intestine,conjugated poly(ethylene glycol)-block-poly(D,L-lactide)(Gly-Sar-PEG-b-PLA) was designed and synthesized, and Pep T1-targeted polymeric micelles were prepared and characterized. The structure of the synthesized Gly-Sar-PEG-b-PLA was confirmed by use of TLC and 1 H-NMR. The average molecular weight measured by GPC was 5954 g/mol with PDI of 1.34. The DiI-loaded polymeric micelles from Gly-Sar-PEG-b-PLA with drug loading content of 0.076% were characterized to exhibit 40.36 nm in diameter with PDI of 0.294, and well-defined spherical shape observed by TEM. Furthermore, the PepT1-targeted polymeric micelles profoundly enhanced intestinal absorption of poorly water-soluble drug. Therefore, the designed PepT1-targeted polymeric micelles might have a promising potential for oral delivery of water-insoluble drugs.
基金The National Key Research and Development Program of China(Grant No.2017YFA0205600)the National Natural Science Foundation of China(Grant No.81773646)the Innovation Team of the Ministry of Education(Grant No.BMU2017TD003)
文摘Many pH-and temperature-responsive polymers have been designed for preparing hydrogel.In the present study,in order to decrease the pH sensitivity of reported poly(amidoamine)-poly(ethyleneglycol)-poly(amidoamine)(PAA1580-PEG4600-PAA1580),we designed and synthesized poly(amidoamine)-poly(ethyleneglycol)-poly(amidoamine)(PAA-PEG-PAA)with shorter length of PAA chain by decreasing reaction temperature for preparing PAA-PEG-PAA hydrogel solution containing doxorubicin(DOX).The PAA-PEG-PAA was synthesized via the Michael-addition polymerization.The characteristic of PAA-PEG-PAA was evaluated.The PAA-PEG-PAA hydrogel solution was prepared and investigated.DOX-loaded PAA-PEG-PAA hydrogel solution was prepared,and its in vitro DOX release and in vitro anti-tumor activity were evaluated.Our results indicated that the viscosity of PAA-PEG-PAA hydrogel solution was concentration-and temperature-dependent.The sol-gel transition temperature of PAA-PEG-PAA hydrogel solution(12%,w/w)ranged from 35 to 29℃,and its pH ranged from 6.0 to 7.4.The released DOX from DOX-loaded PAA-PEG-PAA hydrogel showed sustained release characteristics.The in vitro anti-tumor activity of DOX-loaded PAA-PEG-PAA hydrogel was confirmed in B16 F10 cell line.Considering the acidic tumor microenvironment,this DOX-loaded PAA-PEG-PAA hydrogel solution would be easy in situ administration for intra-tumor injection or para-tumor injection forming hydrogel at body temperature.We suggested that this DOX-loaded PAA-PEG-PAAhydrogel solution,if containing photothermal conversion agents,would have a potential further use for photothermal therapy.
基金supported financially by the National Natural Science Foundation of China(51773131 and 51721091)the Fundamental Research Funds for the Central Universities。
文摘In this work,azobenzene-containing polyurethane liquid crystal networks(PULCN(AZO)s)were synthesized using a one-pot strategy to demonstrate excellent two-way free-standing thermo-/photo-responsive shape memory effects.Based on the step-growth nature of hydroxyls and isocyanates,the architectures of the networks were adjusted by controlling the stoichiometries of chemical materials.A uniform monodomain sample was prepared by external stress relaxation via a reversible addition reaction of a dynamic carbamate bond.Two independent transition temperatures assigned to glass transition temperature/melting temperature and liquid crystal phase transition temperature were employed to thermally trigger triple shape memory effects and two-way autonomous actuation.In addition,taking advantage of the trans-cis photoisomerization of azobenzene,the programmed network showed a reversible bending and unbending shape change upon irradiation by visible light at450 and 550 nm,respectively.Coupling the autonomously thermo-induced contraction/extension actuation and reversible photo-induced bending/unbending behaviors of PULCN(AZO)s in one system will expand their potential applications in emerging multifunctional devices.