期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于自适应聚焦CRIoU损失的目标检测算法
1
作者 肖振久 赵昊泽 +5 位作者 张莉莉 夏羽 郭杰龙 俞辉 李成龙 王俐文 《液晶与显示》 CAS CSCD 北大核心 2023年第11期1468-1480,共13页
在目标检测任务中,传统的边界框回归损失函数所回归的内容与评价标准IoU(Intersection over Union)之间存在不相关性,并且对于边界框的回归属性存在一定不合理性,使得回归属性不完整,降低了检测精度和收敛速度,甚至还会造成回归阻碍的... 在目标检测任务中,传统的边界框回归损失函数所回归的内容与评价标准IoU(Intersection over Union)之间存在不相关性,并且对于边界框的回归属性存在一定不合理性,使得回归属性不完整,降低了检测精度和收敛速度,甚至还会造成回归阻碍的情况。并且在回归任务中也存在样本不均衡的情况,大量的低质量样本影响了损失收敛。为了提高检测精度和回归收敛速度提出了一种新的边界框回归损失函数。首先确定设计思想并设计IoU系列损失函数的范式;其次在IoU损失的基础上引入两中心点形成矩形的周长和两框形成的最小闭包矩形周长的比值作为边界框中心点距离惩罚项,并且将改进的IoU损失应用到非极大值抑制(Non-Maximum Suppression,NMS)处理中。接着引入两框的宽高误差和最小外包框的宽高平方作为宽高惩罚项,确定CRIoU(Complete Relativity IoU,CRIoU)损失函数。最后在CRIoU的基础上加入自适应加权因子,对高质量样本的回归损失加权,定义了自适应聚焦CRIoU(Adaptive focal CRIoU,AF-CRIoU)。实验结果表明,使用AF-CRIoU损失函数对比传统非IoU系列损失的检测精度最高相对提升了8.52%,对比CIoU系列损失的检测精度最高相对提升了2.69%,使用A-CRIoU-NMS(Around CRIoU NMS)方法对比原NMS方法的检测精度提升0.14%。将AF-CRIoU损失应用到安全帽检测中,也达到了很好的检测效果。 展开更多
关键词 目标检测 边界框回归 IoU损失函数 非极大值抑制 自适应聚焦损失
下载PDF
基于改进生成对抗网络的多聚焦图像融合 被引量:4
2
作者 王娟 柯聪 +3 位作者 刘敏 蔡霖康 石豪 袁旭亮 《科学技术与工程》 北大核心 2020年第25期10308-10312,共5页
针对多聚焦图像融合中权重分配和融合规则设计困难的问题,提出了一种基于改进生成对抗网络的多聚焦图像融合算法。首先,对生成器网络和判别器网络进行设计,为了避免图像在网络模型传递过程中造成的信息丢失,裁撤网络结构中的池化层,通... 针对多聚焦图像融合中权重分配和融合规则设计困难的问题,提出了一种基于改进生成对抗网络的多聚焦图像融合算法。首先,对生成器网络和判别器网络进行设计,为了避免图像在网络模型传递过程中造成的信息丢失,裁撤网络结构中的池化层,通过卷积层叠提取图像特征。其次,构建生成对抗网络的损失函数,优化网络参数,得到最佳的网络模型。最后,将实验结果与现有的几种融合算法相比较,通过5种客观评价指标来评价融合图像的效果。结果表明,提出的算法不仅在主观上有着良好的视觉效果,也在客观评价指标上有显著优势。 展开更多
关键词 聚焦图像融合 生成对抗网络 损失函数 网络模型
下载PDF
基于生成对抗网络的多聚焦图像融合 被引量:3
3
作者 蒋留兵 张点 +2 位作者 潘波 郑朋 车俐 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第11期1715-1725,共11页
多聚焦图像融合能够融合同一场景下具有不同聚焦部分的一系列图像.为了克服多聚焦图像融合模糊特征提取中存在的不足,提出一种基于U-Net的生成对抗网络模型.首先,生成器采用U-Net和SSE对多聚焦图像的特征进行提取,并完成图像融合;其次,... 多聚焦图像融合能够融合同一场景下具有不同聚焦部分的一系列图像.为了克服多聚焦图像融合模糊特征提取中存在的不足,提出一种基于U-Net的生成对抗网络模型.首先,生成器采用U-Net和SSE对多聚焦图像的特征进行提取,并完成图像融合;其次,判别器采用卷积层对已知的融合结果和生成器生成的融合图像进行分辨;然后,损失函数采用生成器的对抗损失、映射损失、梯度损失、均方误差损失和判别器对抗损失对生成网络进行参数调节;最后,将生成器、判别器和损失函数组成生成对抗网络模型,并进行实验.Pascal VOC2012数据集作为生成对抗网络的训练集,包括近焦图像、远焦图像、映射图像和融合图像.实验结果证明,该生成对抗网络模型能够有效地提取多聚焦图像中的模糊特征,且融合图像在互信息、相位一致性和感知相似性等方面表现优异. 展开更多
关键词 聚焦图像融合 U-Net 生成对抗网络 损失函数
下载PDF
不平衡数据分类问题的FL逻辑回归算法 被引量:2
4
作者 陈钟毓 尹居良 《统计与决策》 CSSCI 北大核心 2023年第5期33-37,共5页
针对不平衡数据的分类问题,文章利用焦点损失函数可以挖掘困难样本的特性,提出了一种新的逻辑回归算法。首先,定义逻辑回归模型新的损失函数;其次,基于牛顿迭代法,设计FL逻辑回归算法;最后,在比较实验中,运用随机森林进行特征选择,以阈... 针对不平衡数据的分类问题,文章利用焦点损失函数可以挖掘困难样本的特性,提出了一种新的逻辑回归算法。首先,定义逻辑回归模型新的损失函数;其次,基于牛顿迭代法,设计FL逻辑回归算法;最后,在比较实验中,运用随机森林进行特征选择,以阈值优化逻辑回归模型为分类模型进行实验。实验结果表明,与传统逻辑回归算法相比,改进后的算法提高了少数类样本的分类精度,增强了模型的整体分类性能。 展开更多
关键词 fl逻辑回归算法 焦点损失函数 代价敏感学习 不平衡数据 随机森林
下载PDF
改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用 被引量:1
5
作者 宋志华 李垒 +2 位作者 雷德文 张鑫 凌勋 《岩性油气藏》 CAS CSCD 北大核心 2024年第3期40-49,共10页
利用改进的U-Net网络小断层识别技术,对准噶尔盆地玛湖凹陷玛中地区三叠系白碱滩组的小断层进行了识别。研究结果表明:(1)构造导向滤波预处理能有效改善地震资料的品质,提高断层识别的准确率。加入了跳跃连接和中继监督、正态标准化和... 利用改进的U-Net网络小断层识别技术,对准噶尔盆地玛湖凹陷玛中地区三叠系白碱滩组的小断层进行了识别。研究结果表明:(1)构造导向滤波预处理能有效改善地震资料的品质,提高断层识别的准确率。加入了跳跃连接和中继监督、正态标准化和聚焦均方损失函数的U-Net网络方法,对小断层的精细识别能力有所提升。(2)使用200组训练样本集和20组验证样本集,模型地震数据由反射系数与雷克子波褶积生成,断层由人工标注而成。选取最优的网络模型参数,并在合成的含噪地震数据上分别利用相干属性、常规U-Net网络方法及改进的U-Net网络方法进行测试,构造导向滤波有效突出了断层的边界,且增强了同相轴的横向连续性,改进后的U-Net网络方法对于7 m以上断距的断层可进行有效识别。(3)对于玛湖凹陷玛中地区三叠系白碱滩组高角度走滑断裂和伴生小断距次级断裂的识别,改进后的U-Net网络方法的识别精度明显高于相干属性和常规U-Net网络方法,研究区大侏罗沟断裂北翼的(3)号与(4)号砂体,是拓展MZ4井区三叠系白碱滩组高效勘探的有利区。 展开更多
关键词 U-Net网络 断层识别 高角度走滑断裂 伴生小断距次级断裂 正态标准化 聚焦均方损失函数 白碱滩组 三叠系 玛湖凹陷
下载PDF
基于DSCS-YOLO的苹果表面缺陷检测方法
6
作者 朱琦 周德强 +2 位作者 盛卫锋 左文娟 朱家豪 《南京农业大学学报》 CAS CSCD 北大核心 2024年第3期592-601,共10页
[目的]针对苹果无损检测过程中表面缺陷检测精度低的问题,提出一种基于DSCS-YOLO的苹果表面缺陷检测方法。[方法]首先为提高网络对表面缺陷细节特征的提取能力,设计一种基于Dense模块以及SE模块的深浅特征选择模块DSCS(deep and shallow... [目的]针对苹果无损检测过程中表面缺陷检测精度低的问题,提出一种基于DSCS-YOLO的苹果表面缺陷检测方法。[方法]首先为提高网络对表面缺陷细节特征的提取能力,设计一种基于Dense模块以及SE模块的深浅特征选择模块DSCS(deep and shallow feature selection module),采用DSCS替换Backbone中的C3模块,在保留表面缺陷浅层信息的基础上强化对重要特征的学习,并起到削弱冗余特征的作用;针对Backbone与Neck部分输出信息过多导致的参数耦合问题,利用解耦头原理对Head层部分进行分层预测。其次采用ELU激活函数改进原有解耦头,简化末端结构,使网络训练更加容易。最后针对表面缺陷标注困难的问题,采用Wise-IoU损失函数代替CIoU损失函数,为不同质量的标注提供非线性增益,实现网络的动态聚焦学习。[结果]DSCS-YOLO提高了对小目标的检测能力,在苹果表面缺陷测试集上平均精度均值达到90.9%,相较于YOLOv3-tiny、YOLOv5s、YOLOX-s以及SSD分别提高了4.5%、1.9%、6.3%、16.3%,检测效果最优。同时模型参数量为9.54 M,推理时间仅为2.8 ms,检测速度快,满足实际应用需求。[结论]改进后的DSCS-YOLO提高了YOLOv5s算法的精度,实现了苹果表面缺陷的精准识别。 展开更多
关键词 苹果 表面缺陷 检测 特征融合 动态聚焦 损失函数 YOLOv5s 注意力机制
下载PDF
基于不均衡数据与迁移学习的面部微表情识别 被引量:5
7
作者 孔慧芳 钱世超 闫嘉鹏 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第7期895-900,共6页
针对面部微表情识别研究中各类别数量不均衡造成的数据不均衡问题,文章采用端到端的深度学习方法,利用迁移学习将基于深度卷积神经网络的人脸识别模型VGGFace从人脸识别领域迁移到面部表情识别领域,并引入聚焦损失函数作为目标函数来降... 针对面部微表情识别研究中各类别数量不均衡造成的数据不均衡问题,文章采用端到端的深度学习方法,利用迁移学习将基于深度卷积神经网络的人脸识别模型VGGFace从人脸识别领域迁移到面部表情识别领域,并引入聚焦损失函数作为目标函数来降低数据不均衡的影响。对不均衡数据集(CASME II)进行的对比实验结果表明,采用端到端的深度学习方法自动提取特征的效果更好,微表情识别的准确率和F1值更高。 展开更多
关键词 微表情识别 类别不均衡 卷积神经网络 迁移学习 聚焦损失函数(fl)
下载PDF
一种双视图信息融合的乳腺肿块自动检测算法 被引量:6
8
作者 蒋慧琴 王博霖 +2 位作者 马岭 于湛 徐红卫 《郑州大学学报(理学版)》 CAS 北大核心 2020年第4期28-36,共9页
针对基于单视图的深度学习乳腺肿块检测算法假阳性率较高问题,提出一种双视图信息融合的乳腺肿块自动检测算法。首先建立双曲正割模型,利用互相关法自动搜索乳腺X线摄影图像中的肿块感兴趣区域,并根据胸壁线、乳头位置在双侧头尾位和内... 针对基于单视图的深度学习乳腺肿块检测算法假阳性率较高问题,提出一种双视图信息融合的乳腺肿块自动检测算法。首先建立双曲正割模型,利用互相关法自动搜索乳腺X线摄影图像中的肿块感兴趣区域,并根据胸壁线、乳头位置在双侧头尾位和内外侧斜位图像上建立物理坐标系,筛选标注假阳性区域以在数据层扩充监督学习信息;其次,设计空间金字塔池化模块有效融合基于YOLOv3主干网络提取的多尺度局部特征以提高检测敏感性;最后,在类别损失函数中增加聚焦参数,通过调节算法学习过程以提高检测特异性。充分利用双视图数据提供的先验信息提高检测正确率,实验结果表明检测敏感性达到92.0%,特异性达到87.7%,平均每幅图像假阳性0.041个,其检测性能较原模型大幅提升,且具有较好的鲁棒性。 展开更多
关键词 乳腺癌 乳腺X线摄影 计算机辅助诊断 双视图 YOLOv3 faster-RCNN 空间金字塔池化 聚焦损失函数
下载PDF
基于雷达点云与图像数据的三维目标检测方法 被引量:7
9
作者 李文平 袁强 +2 位作者 陈璐 郑利彪 汤晓龙 《电光与控制》 CSCD 北大核心 2021年第10期110-115,共6页
在智能交通领域中,道路场景的三维目标实时检测对于保障汽车行驶安全具有重要意义。使用雷达点云和图像数据进行融合能够达到优势互补的效果,然而使用这两种数据融合的三维目标检测算法为得到较高的检测精度,通常都采用两阶段网络,相比... 在智能交通领域中,道路场景的三维目标实时检测对于保障汽车行驶安全具有重要意义。使用雷达点云和图像数据进行融合能够达到优势互补的效果,然而使用这两种数据融合的三维目标检测算法为得到较高的检测精度,通常都采用两阶段网络,相比于单阶段网络运算速度较慢,而在实际应用中检测系统的速度是非常重要的。针对以上问题,在单阶段网络RetinaNet上进行改进,设计了一种三维目标实时检测方法,将三维锚框映射到点云和图像的特征图上,利用ROI池化,将锚框在特征图上裁剪出的区域转换成相同大小并融合,最终输出目标边界框的回归参数和类别,并且对锚框进行调整得到目标预测边界框。在KITTI数据集上进行的实验表明,所研究的网络在行人、车辆等多目标检测的精确度和时间消耗方面均优于对比算法。 展开更多
关键词 三维目标检测 多传感器信息融合 深度学习 改进RetinaNet 聚焦损失函数
下载PDF
基于超声图像语义分割的HIFU治疗目标区域提取方法 被引量:4
10
作者 黄峥 颜上取 +2 位作者 邹孝 王润民 钱盛友 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第5期693-700,共8页
在高强度聚焦超声治疗中,需要在监控超声图像中准确地提取治疗的目标区域,但受到超声图像中复杂背景和大量噪声的干扰,传统图像分割算法对超声图像中目标区域分割时存在局限性.为了提取超声图像中的目标区域,提出一种结合改进DeepLabv3... 在高强度聚焦超声治疗中,需要在监控超声图像中准确地提取治疗的目标区域,但受到超声图像中复杂背景和大量噪声的干扰,传统图像分割算法对超声图像中目标区域分割时存在局限性.为了提取超声图像中的目标区域,提出一种结合改进DeepLabv3+网络和改进损失函数的语义分割方法.在DeepLabv3+网络的基础上,加入串联了DenseASPP结构与通道注意力机制的注意力机制增强DenseASPP到DeepLabv3+编码器中,并提出一种特征图加权模块加入DeepLabv3+解码器中,以提高网络特征提取能力和对目标区域边缘的分割精度;在损失函数上,结合Huber损失和noise-robust Dice损失得到的改进损失,解决多类别像素数量比例失衡问题并提高损失函数对噪声的鲁棒性.消融实验结果表明,与原始DeepLabv3+网络相比,改进DeepLabv3+网络分割结果的MIoU提高0.46个百分点,使用改进损失函数训练的改进DeepLabv3+网络分割结果的MIoU提高0.99个百分点.所提方法有效地提高了对高强度聚焦超声治疗监控超声图像中目标区域的分割精度,并对噪声具有强鲁棒性. 展开更多
关键词 高强度聚焦超声 DeepLabv3+ 损失函数 空洞卷积 图像分割
下载PDF
基于雷达与图像数据融合的人体目标检测方法 被引量:2
11
作者 李文平 袁强 +2 位作者 陈璐 郑利彪 汤晓龙 《数据采集与处理》 CSCD 北大核心 2021年第2期324-333,共10页
三维人体目标检测在智能安防、机器人、自动驾驶等领域具有重要的应用价值。目前基于雷达与图像数据融合的三维人体目标检测方法主要采用两阶段网络结构,分别完成目标概率较高的候选边界框的选取以及对目标候选框进行分类和边界框回归... 三维人体目标检测在智能安防、机器人、自动驾驶等领域具有重要的应用价值。目前基于雷达与图像数据融合的三维人体目标检测方法主要采用两阶段网络结构,分别完成目标概率较高的候选边界框的选取以及对目标候选框进行分类和边界框回归。目标候选边界框的预先选取使两阶段网络结构的检测准确率和定位精度得到提高,但相对复杂的网络结构导致运算速度受到限制,难以满足实时性要求较高的应用场景。针对以上问题,研究了一种基于改进型RetinaNet的三维人体目标实时检测方法,将主干网络与特征金字塔网络结合用于雷达点云和图像特征的提取,并将两者融合的特征锚框输入到功能网络从而输出三维边界框和目标类别信息。该方法采用单阶段网络结构直接回归目标的类别概率和位置坐标值,并且通过引入聚焦损失函数解决单阶段网络训练过程中存在的正负样本不平衡问题。在KITTI数据集上进行的实验表明,本文方法在三维人体目标检测的平均精度和耗时方面均优于对比算法,可有效实现目标检测的准确性和实时性之间的平衡。 展开更多
关键词 三维人体目标检测 多传感器信息融合 深度学习 改进型RetinaNet 聚焦损失函数
下载PDF
结合潜在扩散模型和U型网络的HIFU治疗目标区域提取
12
作者 翟锦涛 王润民 +4 位作者 李昂 田峰 龚瑾儒 钱盛友 邹孝 《中国图象图形学报》 CSCD 北大核心 2024年第5期1291-1306,共16页
目的 由于数据采集限制和隐私保护造成高强度聚焦超声(high intensity focused ultrasound, HIFU)治疗超声监控图像数据量过少,导致现有的强监督分割方法提取治疗目标区域不佳。因此,提出了一种结合潜在扩散模型(latent diffusion)和U... 目的 由于数据采集限制和隐私保护造成高强度聚焦超声(high intensity focused ultrasound, HIFU)治疗超声监控图像数据量过少,导致现有的强监督分割方法提取治疗目标区域不佳。因此,提出了一种结合潜在扩散模型(latent diffusion)和U型网络的HIFU治疗目标区域提取方法。方法 生成阶段利用潜在扩散模型和自动筛选模块,实现超声监控图像数据的扩充。目标区域提取阶段提出新型U型分割网络(novel U-shaped segmentation network,NUNet),在编码器端结合空洞空间金字塔池化(atrous spatial pyramid pooling, ASPP),扩大网络的感受野;设计双注意力跳跃连接模块(dual attention skip connection,DAttention-SK),降低边缘纹理信息丢失的风险;引入多交叉熵损失提高网络的分割性能。结果 实验结果表明,与其他生成模型相比,本文使用潜在扩散模型生成的超声监控图像在FID(Fréchet inception distance)和LPIPS(learned perceptual image patch similarity)上获得更优的指标(分别为0.172和0.072);相较于先进的PDF-UNet(U-shaped pyramid-dilated network),在HIFU临床治疗子宫肌瘤超声监控数据集中,本文分割算法的MIoU(mean intersection over union)和DSC(Dice similarity coefficient)分别提高了2.67%和1.39%。为进一步探讨所提算法的泛化性,在乳腺超声公共数据集(breast ultrasound images dataset,BUSI)上进行了验证。相较于M2SNet(multi-scale in multi-scale subtraction network),本文算法MIoU和DSC分别提升了2.11%和1.36%。结论 本文算法在一定程度上解决了超声监控图像中数据量过少的问题,实现对监控超声图像中目标区域的精确提取。代码开源地址为https://github.com/425877/based-on-latent-diffusion-model-for-HIFU-treatment-target-region-extraction。 展开更多
关键词 高强度聚焦超声(HIFU) 图像分割 图像生成 损失函数 潜在扩散模型
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部