The stoichiometric ratios and related regimes, which can promote anti-flooding of polymer electrolyte membrane fuel cell (PEMFC) with in-plate adverse-flow flow-field (IPAF), were investigated. Two flow combinatio...The stoichiometric ratios and related regimes, which can promote anti-flooding of polymer electrolyte membrane fuel cell (PEMFC) with in-plate adverse-flow flow-field (IPAF), were investigated. Two flow combinations, which are the simple and complex adverse-flow between plates (ABP) that can be realized by IPAF, were employed. Constant stoichiometric ratios examination indicates that the complex ABP could improve anti-flooding of PEMFC better in the medium (greater than 200 mA/cm2 and less than 1 000 mA/cm2) and high (greater than 1 000 mA/cm2) current densities than the simple ABP. More stoichiometric ratios were introduced to find the cathode critical stoichiometry. Under the condition of cathode critical stoichiometry, the maximal local relative humidity of both electrodes of complex ABP is equal to 100% and below while the anti-flooding of the cathode of simple ABP is not satisfactory in the medium and high current densities. Further study shows that the mechanism of fuel cell, which is the imerdependence between the electrodes effect, can make significant contribution to anti-flooding.展开更多
In this paper, MPt/C (M= La, Nd) catalysts of PEMFC were synthesized by microwave radiation process. The crystallinity and structure of catalysts were respectively analyzed by XRD and nitrogen adsorption tests. The ac...In this paper, MPt/C (M= La, Nd) catalysts of PEMFC were synthesized by microwave radiation process. The crystallinity and structure of catalysts were respectively analyzed by XRD and nitrogen adsorption tests. The activity of catalysts was investigated by electrochemistry experiment. The results showed that: 1) compared with Pt/C catalyst prepared by typical impregnation-reduction process, the size of MPt/C catalyst particle decreased and the available crystal for O2 reduction increased; 2) the MPt/C catalysts had relatively high BET surface areas; and 3)these crystal transformations of the MPt/C catalyst brought high the electrocatalytic activity, and as a result, improved the power of PEMFC.展开更多
Although polymer electrolyte membrane fuel cells (PEMFCs) have received broad attention due to their virtually zero emission, high power density, and high efficiency, at present the limited stability of the electroc...Although polymer electrolyte membrane fuel cells (PEMFCs) have received broad attention due to their virtually zero emission, high power density, and high efficiency, at present the limited stability of the electrocatalysts used in PEMFCs is a critical limitation to their large-scale commercialization. As a type of popularly used electrocatalyst material, carbon black supported platinum (Pt/C)--although highly efficient--undergoes corrosion of carbon, Pt dissolution, Ostwald ripening, and aggregation of Pt nanoparticles (NPs) under harsh chemical and electro- chemical oxidation conditions, which results in performance degradation of the electrocatalysts. In order to overcome these disadvantages, many groups have tried to improve the carbon support materials on which Pt is loaded. It has been found that some novel carbon nanomaterials and noncarbon materials with high surface areas, sufficient anchoring sites, high electrical conductivities, and high oxidation resistance under the strongly oxidizing condition in PEMFCs are ideal alternative supports. This review highlights the following aspects: (i) Recent advances in using novel carbon nanomaterials and noncarbon support materials to enhance the long-term durability of electrocatalysts; (ii) solutions to improve the electrical conductivity, surface area, and the strong interaction between metal and supports; and (iii) the synergistic effects in hybrid supports which help improve the stability of electrocatalysts.展开更多
Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. Thi...Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the past 15 years. It is focused on polymer electrolyte membrane fuel cells as an environmentally benign and feasible energy source. Graphene is used as a promising support material for Pt catalysts. It ensures high catalyst loading, good electro- catalysis and stability. Attention has been drawn to structural sensitivity of the catalysts, as well as polymetallic and nanos- tructured catalysts in order to improve the oxygen reduction reaction. Characterization methods including electrochemical, microscopic and spectroscopic techniques are summarized with an overview of the latest technological advances in the field. Future perspective is given in a form of Pt-free catalysts, such as microbial fuel cells for long-term development.展开更多
基金Project(20976095) supported by the National Natural Science Foundation of ChinaProject(2012CB215500) supported by the National Basic Research Program of China+1 种基金Project(20090002110074) supported by the Specialized Research Fund for the Doctoral Program of Higher Education, ChinaProjects(2012AA1106012, 2012AA053402) supported by the National Hi-tech Research and Development Program of China
文摘The stoichiometric ratios and related regimes, which can promote anti-flooding of polymer electrolyte membrane fuel cell (PEMFC) with in-plate adverse-flow flow-field (IPAF), were investigated. Two flow combinations, which are the simple and complex adverse-flow between plates (ABP) that can be realized by IPAF, were employed. Constant stoichiometric ratios examination indicates that the complex ABP could improve anti-flooding of PEMFC better in the medium (greater than 200 mA/cm2 and less than 1 000 mA/cm2) and high (greater than 1 000 mA/cm2) current densities than the simple ABP. More stoichiometric ratios were introduced to find the cathode critical stoichiometry. Under the condition of cathode critical stoichiometry, the maximal local relative humidity of both electrodes of complex ABP is equal to 100% and below while the anti-flooding of the cathode of simple ABP is not satisfactory in the medium and high current densities. Further study shows that the mechanism of fuel cell, which is the imerdependence between the electrodes effect, can make significant contribution to anti-flooding.
基金The Department of Science and Technology of Henan Province (No. 0324210007)
文摘In this paper, MPt/C (M= La, Nd) catalysts of PEMFC were synthesized by microwave radiation process. The crystallinity and structure of catalysts were respectively analyzed by XRD and nitrogen adsorption tests. The activity of catalysts was investigated by electrochemistry experiment. The results showed that: 1) compared with Pt/C catalyst prepared by typical impregnation-reduction process, the size of MPt/C catalyst particle decreased and the available crystal for O2 reduction increased; 2) the MPt/C catalysts had relatively high BET surface areas; and 3)these crystal transformations of the MPt/C catalyst brought high the electrocatalytic activity, and as a result, improved the power of PEMFC.
文摘Although polymer electrolyte membrane fuel cells (PEMFCs) have received broad attention due to their virtually zero emission, high power density, and high efficiency, at present the limited stability of the electrocatalysts used in PEMFCs is a critical limitation to their large-scale commercialization. As a type of popularly used electrocatalyst material, carbon black supported platinum (Pt/C)--although highly efficient--undergoes corrosion of carbon, Pt dissolution, Ostwald ripening, and aggregation of Pt nanoparticles (NPs) under harsh chemical and electro- chemical oxidation conditions, which results in performance degradation of the electrocatalysts. In order to overcome these disadvantages, many groups have tried to improve the carbon support materials on which Pt is loaded. It has been found that some novel carbon nanomaterials and noncarbon materials with high surface areas, sufficient anchoring sites, high electrical conductivities, and high oxidation resistance under the strongly oxidizing condition in PEMFCs are ideal alternative supports. This review highlights the following aspects: (i) Recent advances in using novel carbon nanomaterials and noncarbon support materials to enhance the long-term durability of electrocatalysts; (ii) solutions to improve the electrical conductivity, surface area, and the strong interaction between metal and supports; and (iii) the synergistic effects in hybrid supports which help improve the stability of electrocatalysts.
基金supported by the Danish Council for Independent Research|Technology and Production Sciences(DFF-1335-00330)
文摘Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the past 15 years. It is focused on polymer electrolyte membrane fuel cells as an environmentally benign and feasible energy source. Graphene is used as a promising support material for Pt catalysts. It ensures high catalyst loading, good electro- catalysis and stability. Attention has been drawn to structural sensitivity of the catalysts, as well as polymetallic and nanos- tructured catalysts in order to improve the oxygen reduction reaction. Characterization methods including electrochemical, microscopic and spectroscopic techniques are summarized with an overview of the latest technological advances in the field. Future perspective is given in a form of Pt-free catalysts, such as microbial fuel cells for long-term development.