AIM: To evaluate the presence of progenitor cells in healthy adult rat liver displaying the equivalent ad- vanced hepatogenic profile as that obtained in humans. METHODS: Rat fibroblastic-like liver derived cells (...AIM: To evaluate the presence of progenitor cells in healthy adult rat liver displaying the equivalent ad- vanced hepatogenic profile as that obtained in humans. METHODS: Rat fibroblastic-like liver derived cells (rFLDC) were obtained from collagenase-isolated liver cell suspensions and characterized and their phenotype profile determined using flow cytometry, immunocyto- chemistry, reverse transcription polymerase chain reac- tion and functional assays. RESULTS: rFLDC exhibit fibroblastoid morphology, ex- press mesenchymal (CD73, CD90, vimentin, m-smooth muscle actin), hepatocyte (UGTIA1, CK8) and biliary (CK19) markers. Moreover, these cells are able to store glycogen, and have glucose 6 phosphatase activity, but not UGTIA1 activity. Under the hepatogenic differentia- tion protocol, rFLDC display an up-regulation of hepatocyte markers expression (albumin, tryptophan 2,3-di- oxygenase, G6Pase) correlated to a down-regulation of the expression of the biliary marker CK19. CONCLUSION: Advanced hepatic features observed in human liver progenitor cells could not be demonstrated in rFLDC. However, we demonstrated the presence of an original rodent hepato-biliary cell type.展开更多
Plants adapt to phosphorus (P) deficiency through a complex of biological processes and many genes are involved. Tomato (Solanum lycopersicum L. 'Hezuo906') plants were selected to grown hydroponically to study ...Plants adapt to phosphorus (P) deficiency through a complex of biological processes and many genes are involved. Tomato (Solanum lycopersicum L. 'Hezuo906') plants were selected to grown hydroponically to study the temporal and spatial gene expression patterns of the 14-3-3 gene family and their roles in response to P deficiency in tomato plants. Using real-time reverse-transcriptase polymerase chain reaction (RT-PCR), we investigated the expression profiles in different tissues (root, stem and leaf) at short-term and long-term P-deficient stress phases. Results revealed that i) four members of 14-3-3 gene family (TFT1, TFT4, TFT6 and TFTT) were involved in the adaptation of tomato plants to P deficiency, ii) TFT7 responded quickly to P deficiency in the root, while TFT6 responded slowly to P deficiency in the leaf, iii) expression response of TFT4 to P-deficient stress was widely distributed in different tissues (root, stem and leaf) while TFT8 only displayed stem-specific expression, and iv) temporal and tissues-specific expression patterns to P deficiency suggested that isoform specificity existed in tomato 14-3-3 gene family. We propose that TFT7 (one member of e-like group in tomato 14-3-3 family) is the early responsive gene and may play a role in the adaptation of tomato plants to shortterm P deficiency, while TFT6 (one member of non-e group in tomato 14-3-3 family) is the later responsive gene and may play a role in the adaptation of tomato plants to long-term P deficiency.展开更多
We constructed an expression cassette of the organophosphorus pesticide degrading (opal) gene under the control of the E8 promoter. Then opd was transformed into tomato fruit using an agroinfiltration transient expr...We constructed an expression cassette of the organophosphorus pesticide degrading (opal) gene under the control of the E8 promoter. Then opd was transformed into tomato fruit using an agroinfiltration transient expression system. β-Glucuronidase (GUS) staining, reverse transcription-polymerase chain reaction (RT-PCR), wavelength scanning, and fluorescent reaction were performed to examine the expression of the opd gene and the hydrolysis activity on coumaphos of organo- phosphorus hydrolase (OPH) in tomato fruit. The results show that the agroinfiltrated tomato fruit-expressed OPH had the maximum hydrolysis activity of about 11.59 Uhng total soluble protein. These results will allow us to focus on breeding transgenic plants that could not only enhance the degrading capability of fruit and but also hold no negative effects on pest control when spraying organophosphorus pesticides onto the seedlings in fields.展开更多
基金Supported by Fonds pour la formation à la recherche dans l’industrie et dans l’agriculture (FRIA)
文摘AIM: To evaluate the presence of progenitor cells in healthy adult rat liver displaying the equivalent ad- vanced hepatogenic profile as that obtained in humans. METHODS: Rat fibroblastic-like liver derived cells (rFLDC) were obtained from collagenase-isolated liver cell suspensions and characterized and their phenotype profile determined using flow cytometry, immunocyto- chemistry, reverse transcription polymerase chain reac- tion and functional assays. RESULTS: rFLDC exhibit fibroblastoid morphology, ex- press mesenchymal (CD73, CD90, vimentin, m-smooth muscle actin), hepatocyte (UGTIA1, CK8) and biliary (CK19) markers. Moreover, these cells are able to store glycogen, and have glucose 6 phosphatase activity, but not UGTIA1 activity. Under the hepatogenic differentia- tion protocol, rFLDC display an up-regulation of hepatocyte markers expression (albumin, tryptophan 2,3-di- oxygenase, G6Pase) correlated to a down-regulation of the expression of the biliary marker CK19. CONCLUSION: Advanced hepatic features observed in human liver progenitor cells could not be demonstrated in rFLDC. However, we demonstrated the presence of an original rodent hepato-biliary cell type.
基金Supported by the National Natural Science Foundation of China (Nos. 31272229 and 41171234)the National Basic Research Program (973 Program) of China (No. 2013CB127402)
文摘Plants adapt to phosphorus (P) deficiency through a complex of biological processes and many genes are involved. Tomato (Solanum lycopersicum L. 'Hezuo906') plants were selected to grown hydroponically to study the temporal and spatial gene expression patterns of the 14-3-3 gene family and their roles in response to P deficiency in tomato plants. Using real-time reverse-transcriptase polymerase chain reaction (RT-PCR), we investigated the expression profiles in different tissues (root, stem and leaf) at short-term and long-term P-deficient stress phases. Results revealed that i) four members of 14-3-3 gene family (TFT1, TFT4, TFT6 and TFTT) were involved in the adaptation of tomato plants to P deficiency, ii) TFT7 responded quickly to P deficiency in the root, while TFT6 responded slowly to P deficiency in the leaf, iii) expression response of TFT4 to P-deficient stress was widely distributed in different tissues (root, stem and leaf) while TFT8 only displayed stem-specific expression, and iv) temporal and tissues-specific expression patterns to P deficiency suggested that isoform specificity existed in tomato 14-3-3 gene family. We propose that TFT7 (one member of e-like group in tomato 14-3-3 family) is the early responsive gene and may play a role in the adaptation of tomato plants to shortterm P deficiency, while TFT6 (one member of non-e group in tomato 14-3-3 family) is the later responsive gene and may play a role in the adaptation of tomato plants to long-term P deficiency.
基金Project supported by the National Key Technology R&D Program of China(No.2007BAD59B06)the International Science and Technology Cooperation Program of China(No.2007DFA31260)
文摘We constructed an expression cassette of the organophosphorus pesticide degrading (opal) gene under the control of the E8 promoter. Then opd was transformed into tomato fruit using an agroinfiltration transient expression system. β-Glucuronidase (GUS) staining, reverse transcription-polymerase chain reaction (RT-PCR), wavelength scanning, and fluorescent reaction were performed to examine the expression of the opd gene and the hydrolysis activity on coumaphos of organo- phosphorus hydrolase (OPH) in tomato fruit. The results show that the agroinfiltrated tomato fruit-expressed OPH had the maximum hydrolysis activity of about 11.59 Uhng total soluble protein. These results will allow us to focus on breeding transgenic plants that could not only enhance the degrading capability of fruit and but also hold no negative effects on pest control when spraying organophosphorus pesticides onto the seedlings in fields.