期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于知识的颅内出血(ICH)三维医学图像分割方法
1
作者 周旭 金国斌 +1 位作者 顾祖莉 蒋伟 《上海生物医学工程》 2004年第1期7-11,共5页
本文描述一种基于知识的三维医学图像自动分割方法 ,用于进行人体颅内出血 (IntracranialHemorrhage ,ICH)的分割和分析。首先 ,数字化CT胶片 ,并自动对数字化后的胶片按照有无异常分类。然后 ,阀值结合模糊C均值聚类算法将图像分类成... 本文描述一种基于知识的三维医学图像自动分割方法 ,用于进行人体颅内出血 (IntracranialHemorrhage ,ICH)的分割和分析。首先 ,数字化CT胶片 ,并自动对数字化后的胶片按照有无异常分类。然后 ,阀值结合模糊C均值聚类算法将图像分类成多个具有统一亮度的区域。最后 ,在先验知识以及预定义的规则的基础上 ,借助基于知识的专家系统将各个区域标记为背景、钙化点、血肿、颅骨、脑干。 展开更多
关键词 颅内出血 三维医学图像 图像分割 模糊C均值 聚类人工智能
下载PDF
A NOVEL SVM ENSEMBLE APPROACH USING CLUSTERING ANALYSIS 被引量:2
2
作者 Yuan Hejin Zhang Yanning +2 位作者 Yang Fuzeng Zhou Tao Du Zhenhua 《Journal of Electronics(China)》 2008年第2期246-253,共8页
A novel Support Vector Machine(SVM) ensemble approach using clustering analysis is proposed. Firstly,the positive and negative training examples are clustered through subtractive clus-tering algorithm respectively. Th... A novel Support Vector Machine(SVM) ensemble approach using clustering analysis is proposed. Firstly,the positive and negative training examples are clustered through subtractive clus-tering algorithm respectively. Then some representative examples are chosen from each of them to construct SVM components. At last,the outputs of the individual classifiers are fused through ma-jority voting method to obtain the final decision. Comparisons of performance between the proposed method and other popular ensemble approaches,such as Bagging,Adaboost and k.-fold cross valida-tion,are carried out on synthetic and UCI datasets. The experimental results show that our method has higher classification accuracy since the example distribution information is considered during en-semble through clustering analysis. It further indicates that our method needs a much smaller size of training subsets than Bagging and Adaboost to obtain satisfactory classification accuracy. 展开更多
关键词 Support Vector Machine (SVM) ENSEMBLE Clustering analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部