期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度融合和轻量化网络的无人机目标检测算法
被引量:
2
1
作者
薛珊
卢涛
+1 位作者
吕琼莹
曹国华
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第8期82-93,共12页
针对在游乐场、公园等公共安全区域因无人机的尺度变化实时检测困难和计算资源有限的问题,提出一种网络动态实时检测无人机方法YOLO-Ads,以增加网络对无人机尺度变化的鲁棒性.首先自主构建了无人机数据集;其次将轻量化网络作为主干建立...
针对在游乐场、公园等公共安全区域因无人机的尺度变化实时检测困难和计算资源有限的问题,提出一种网络动态实时检测无人机方法YOLO-Ads,以增加网络对无人机尺度变化的鲁棒性.首先自主构建了无人机数据集;其次将轻量化网络作为主干建立一个新的MDDRDNet网络,减小模型计算的复杂度,并且引入协调注意力机制模块,加强网络对空间和通道的关注度;然后采用均值聚类算法,重新生成先验框,在先验框的选择上结合多探测头和多数据集的寻优办法,使重新生成的先验框与无人机更加匹配;然后基于特征融合和残差思想建立一个新的探测头以适应更小尺度无人机的检测;最后,在检测模块中引入类激活映射模块生成热力图,以观察网络对无人机尺度变化的敏感程度,同时与当前主流网络SSD、CenterNet、YOLOv5、YOLOx等和不同主干网络ResNet、EfficientNet、VGGNet等进行对比实验.实验结果表明,新提出的算法在尺度变化的无人机检测上平均精度达到96.62%,相较YOLOv4算法提高了1.88%;检测速度为每秒47帧,相较YOLOv4算法提高了19帧;模型所占内存大约为10.844 M,约为原内存的六分之一,体现了该方法的有效性和鲁棒性.
展开更多
关键词
目标检测
尺度变化
协调注意力机制
特征融合
聚类优化办法
下载PDF
职称材料
题名
基于多尺度融合和轻量化网络的无人机目标检测算法
被引量:
2
1
作者
薛珊
卢涛
吕琼莹
曹国华
机构
长春理工大学机电工程学院
长春理工大学重庆研究院
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第8期82-93,共12页
基金
吉林省科技厅重点科技研发基金项目(20180201058SF)
吉林省教育厅科学技术研究基金项目(JJKH20210812KJ)。
文摘
针对在游乐场、公园等公共安全区域因无人机的尺度变化实时检测困难和计算资源有限的问题,提出一种网络动态实时检测无人机方法YOLO-Ads,以增加网络对无人机尺度变化的鲁棒性.首先自主构建了无人机数据集;其次将轻量化网络作为主干建立一个新的MDDRDNet网络,减小模型计算的复杂度,并且引入协调注意力机制模块,加强网络对空间和通道的关注度;然后采用均值聚类算法,重新生成先验框,在先验框的选择上结合多探测头和多数据集的寻优办法,使重新生成的先验框与无人机更加匹配;然后基于特征融合和残差思想建立一个新的探测头以适应更小尺度无人机的检测;最后,在检测模块中引入类激活映射模块生成热力图,以观察网络对无人机尺度变化的敏感程度,同时与当前主流网络SSD、CenterNet、YOLOv5、YOLOx等和不同主干网络ResNet、EfficientNet、VGGNet等进行对比实验.实验结果表明,新提出的算法在尺度变化的无人机检测上平均精度达到96.62%,相较YOLOv4算法提高了1.88%;检测速度为每秒47帧,相较YOLOv4算法提高了19帧;模型所占内存大约为10.844 M,约为原内存的六分之一,体现了该方法的有效性和鲁棒性.
关键词
目标检测
尺度变化
协调注意力机制
特征融合
聚类优化办法
Keywords
object detection
scale change
coordinated attention mechanism
feature fusion
clustering optimi⁃zation method
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度融合和轻量化网络的无人机目标检测算法
薛珊
卢涛
吕琼莹
曹国华
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部