为了降低干扰对齐所需的处理开销,将链路划分为多个簇分别进行处理成为可行的办法之一。针对现有簇划分算法中运算复杂度较高的问题,本文提出了一种基于最小信干比的簇划分算法。在此基础上,针对所有簇同时通信造成部分簇内链路接收端...为了降低干扰对齐所需的处理开销,将链路划分为多个簇分别进行处理成为可行的办法之一。针对现有簇划分算法中运算复杂度较高的问题,本文提出了一种基于最小信干比的簇划分算法。在此基础上,针对所有簇同时通信造成部分簇内链路接收端信干噪比(Signal to interference plus noise ratio,SINR)较低的问题,本文将以链路为单位的调度问题等效为以簇为单位的调度问题,提出了一种基于层次聚类的簇调度算法。理论与仿真实验结果表明,本文所提出的簇划分算法的运算复杂度明显低于现有算法,且相同条件下的系统平均吞吐量更高。同时,本文提出的基于簇层次聚类的调度算法不同程度地提升了各簇内链路接收端的SINR,系统可根据不同的性能需求进行调度策略选择。展开更多
传统的分层聚类算法在聚类过程中,仅使用样本间的距离作为相似度的唯一标准,其描述过于单一。考虑到宇宙中星系的形成过程本质也是一种聚类过程,星系之间吸引力是靠万有引力作用。将万有引力思想引人分层聚类中,提出一种基于引力的...传统的分层聚类算法在聚类过程中,仅使用样本间的距离作为相似度的唯一标准,其描述过于单一。考虑到宇宙中星系的形成过程本质也是一种聚类过程,星系之间吸引力是靠万有引力作用。将万有引力思想引人分层聚类中,提出一种基于引力的层次聚类算法HCBG(Hierarchical Clustering Base Gravity),从样本问的距离和类簇的大小两个方面更加精确地刻厕相似度。把分层聚类的过程看成样本点之间依据“万有引力”自发吸引的过程。采用UCI机器学习数据库的I.ris,Wine和Glass数据集,实验结果表明,提出的HCBG算法的聚类结果比经典的基于距离的层次聚类HC(Hierarchical Clustering)提高5%~10%左右。展开更多
文摘为了降低干扰对齐所需的处理开销,将链路划分为多个簇分别进行处理成为可行的办法之一。针对现有簇划分算法中运算复杂度较高的问题,本文提出了一种基于最小信干比的簇划分算法。在此基础上,针对所有簇同时通信造成部分簇内链路接收端信干噪比(Signal to interference plus noise ratio,SINR)较低的问题,本文将以链路为单位的调度问题等效为以簇为单位的调度问题,提出了一种基于层次聚类的簇调度算法。理论与仿真实验结果表明,本文所提出的簇划分算法的运算复杂度明显低于现有算法,且相同条件下的系统平均吞吐量更高。同时,本文提出的基于簇层次聚类的调度算法不同程度地提升了各簇内链路接收端的SINR,系统可根据不同的性能需求进行调度策略选择。
文摘传统的分层聚类算法在聚类过程中,仅使用样本间的距离作为相似度的唯一标准,其描述过于单一。考虑到宇宙中星系的形成过程本质也是一种聚类过程,星系之间吸引力是靠万有引力作用。将万有引力思想引人分层聚类中,提出一种基于引力的层次聚类算法HCBG(Hierarchical Clustering Base Gravity),从样本问的距离和类簇的大小两个方面更加精确地刻厕相似度。把分层聚类的过程看成样本点之间依据“万有引力”自发吸引的过程。采用UCI机器学习数据库的I.ris,Wine和Glass数据集,实验结果表明,提出的HCBG算法的聚类结果比经典的基于距离的层次聚类HC(Hierarchical Clustering)提高5%~10%左右。