期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于随机kNN图的批量边删除聚类算法 被引量:4
1
作者 雷小锋 陈皎 +1 位作者 毛善君 谢昆青 《软件学报》 EI CSCD 北大核心 2018年第12期3764-3785,共22页
建立邻接图上的批量边删除聚类算法通用框架,提出基于高斯平滑模型的批量边删除判定准则,定义了适于聚类的邻接图的一般性质,提出并证明在kNN图基础上引入随机因子构造的随机kNN图,可以增强顶点之间的局部连通性,使聚类结果不再强烈依... 建立邻接图上的批量边删除聚类算法通用框架,提出基于高斯平滑模型的批量边删除判定准则,定义了适于聚类的邻接图的一般性质,提出并证明在kNN图基础上引入随机因子构造的随机kNN图,可以增强顶点之间的局部连通性,使聚类结果不再强烈依赖于某条边或某些边的保留或删除.RkNNClus算法简洁高效,依赖参数少,无需指定类簇数目,模拟和真实数据上的实验均有证明. 展开更多
关键词 邻接图 批量边删除 随机kNN图 删除准则 局部高斯平滑
下载PDF
局部迭代的快速K-means聚类算法 被引量:9
2
作者 李峰 李明祥 张宇敬 《计算机工程与应用》 CSCD 北大核心 2020年第13期63-71,共9页
为了解决K-means算法在聚类数量增多的情况下,因选择了不合适的中心初值而影响到聚类效果这一问题,提出了一种局部迭代的快速K-means聚类算法(PIFKM+−)。该算法在K-means聚类的基础上,不断寻找能够被分割的聚类簇和能够被删除的聚类簇,... 为了解决K-means算法在聚类数量增多的情况下,因选择了不合适的中心初值而影响到聚类效果这一问题,提出了一种局部迭代的快速K-means聚类算法(PIFKM+−)。该算法在K-means聚类的基础上,不断寻找能够被分割的聚类簇和能够被删除的聚类簇,并对受影响的局部数据进行重新聚类处理,降低了整个聚类更新的时间复杂度,提高了聚类的效果。PIFKM+−算法在面对聚类数量众多的情况下,具有能够快速更新聚类、对聚类中心初值不敏感、能够提高聚类精确度等优势。通过与K-means和K-means++两种算法的比较,在仿真数据集和真实数据集的综合实验下,验证了该算法的精确性、高效率性和可扩展性,同时实验结果的统计分析表明该算法在提高了聚类精确度的同时并没有损失太多的时间效率。 展开更多
关键词 K-MEANS算法 分割 聚类删除 局部迭代 邻居
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部