期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
非负矩阵分解在微阵列数据分类和聚类发现中的应用 被引量:5
1
作者 任重鲁 李金明 《计算机工程与科学》 CSCD 北大核心 2014年第7期1389-1397,共9页
基因芯片是微阵列技术的典型代表,它具有高通量的特性和同时检测全部基因组基因表达水平的能力。应用微阵列芯片的一个主要目的是基因表达模式的发现,即在基因组水平发现功能相似,生物学过程相关的基因簇;或者将样本分类,发现样本的各... 基因芯片是微阵列技术的典型代表,它具有高通量的特性和同时检测全部基因组基因表达水平的能力。应用微阵列芯片的一个主要目的是基因表达模式的发现,即在基因组水平发现功能相似,生物学过程相关的基因簇;或者将样本分类,发现样本的各种亚型。例如根据基因表达水平对癌症样本进行分类,发现疾病的分子亚型。非负矩阵分解NMF方法是一种非监督的、非正交的、基于局部表示的矩阵分解方法。近年来这种方法被越来越多地应用在微阵列数据的分类分析和聚类发现中。系统地介绍了非负矩阵分解的原理、算法和应用,分解结果的生物学解释,分类结果的质量评估和基于NMF算法的分类软件。总结并评估了NMF方法在微阵列数据分类和聚类发现应用中的表现。 展开更多
关键词 非负矩阵分解 微阵列数据 分析 聚类发现
下载PDF
基于空间密度的群以噪声发现聚类算法研究 被引量:16
2
作者 毕方明 王为奎 陈龙 《南京大学学报(自然科学版)》 CSCD 北大核心 2012年第4期491-498,共8页
针对基于密度的群以噪声发现聚类算法(density-based spatial clustering of applications withnoise,DBSCAN)的所需内存及I/O消耗大;空间聚类的密度不均匀时,采用全局统一的变量,聚类质量较差;对于输入参数敏感性较高等三个不足进行了... 针对基于密度的群以噪声发现聚类算法(density-based spatial clustering of applications withnoise,DBSCAN)的所需内存及I/O消耗大;空间聚类的密度不均匀时,采用全局统一的变量,聚类质量较差;对于输入参数敏感性较高等三个不足进行了改进.首先根据数据的空间分布特性,将整个数据空间划分为多个较小的分区,使分区的局部密度相对更均匀;然后将每个局部分区运用改进的DBSCAN算法进行聚类,改进的算法可以根据空间数据的分布,对一个中心点自适应的选取近邻,并对这些近邻点进行取样、扩展,有效提高了算法的准确性和效率;接着将所得到的聚类结果按照合并规则进行合并.最后通过仿真实验,验证了改进的DBSCAN算法解决了内存消耗过大、聚类质量差及全局参数敏感的问题. 展开更多
关键词 数据挖掘 空间 基于密度的群以噪声发现 数据分区 参数自适应
下载PDF
基于快速搜索与发现密度峰值聚类算法的含有分布式光伏的配电网电压分区协调控制 被引量:15
3
作者 张赟宁 石泽 《现代电力》 北大核心 2020年第1期35-41,共7页
随着大量分布式光伏并入配电网,重要负荷节点电压越限的紧急情况更容易发生,这对当前潮流状态下电压控制的快速性提出了更高的要求。考虑电压集中控制方式控制过程复杂且传统的分区方法耗时较长等问题,首先以节点间的综合电压灵敏度为... 随着大量分布式光伏并入配电网,重要负荷节点电压越限的紧急情况更容易发生,这对当前潮流状态下电压控制的快速性提出了更高的要求。考虑电压集中控制方式控制过程复杂且传统的分区方法耗时较长等问题,首先以节点间的综合电压灵敏度为基础计算节点电气距离,根据电气距离构建节点相似度矩阵,并采用快速搜索与发现密度峰值聚类算法对配电网进行快速分区;然后考虑本地光伏独立调压能力的不足,提出了一种先无功后有功的电压分区协调控制策略;最后通过IEEE33配电网算例的仿真结果验证了该分区方法的快速性和电压分区协调控制策略的有效性。 展开更多
关键词 电压集中控制 综合电压灵敏度 电气距离 快速搜索与发现密度峰值 电压分区协调控制
下载PDF
快速复杂网络聚类图形处理器并行算法
4
作者 王海峰 《计算机应用》 CSCD 北大核心 2012年第9期2458-2462,共5页
研究复杂网络拓扑属性的聚类算法需要处理大量节点和连接边,因此对计算性能要求高,否则无法处理现实中的表示为复杂网络的系统。利用图形处理器(GPU)的并行聚类算法是解决该问题的重要方法。利用原语技术设计并行快速聚类算法,原语法不... 研究复杂网络拓扑属性的聚类算法需要处理大量节点和连接边,因此对计算性能要求高,否则无法处理现实中的表示为复杂网络的系统。利用图形处理器(GPU)的并行聚类算法是解决该问题的重要方法。利用原语技术设计并行快速聚类算法,原语法不仅降低并行算法的复杂性而且提高聚类的普适性;再从线程调度策略和缓存管理两个方面提出优化的方法来解决负载均衡和数据重用性问题。通过实验对比并行快速聚类算法与优化算法的性能,结果显示并行快速聚类优化后的算法取得较好加速比。 展开更多
关键词 簇结构 复杂网络 聚类发现 图形处理器 并行算法
下载PDF
基于改进模糊核聚类的室内定位方法研究 被引量:3
5
作者 杜凯颖 张为公 王东 《测控技术》 CSCD 2018年第2期42-46,共5页
针对室内定位中,WiFi位置指纹法存在的定位实时性和精度的问题,提出一种基于改进模糊核聚类(KFCM)和加权K近邻(WKNN)结合的室内定位方法,旨在降低定位时间和改善定位精度。首先利用快速搜索和发现峰值聚类(CFSFDP)确定聚类数目和初始聚... 针对室内定位中,WiFi位置指纹法存在的定位实时性和精度的问题,提出一种基于改进模糊核聚类(KFCM)和加权K近邻(WKNN)结合的室内定位方法,旨在降低定位时间和改善定位精度。首先利用快速搜索和发现峰值聚类(CFSFDP)确定聚类数目和初始聚类中心,克服KFCM算法对初始聚类中心选取的依赖性而导致聚类结果不稳定的缺点,在此基础上,采用WKNN进行定位匹配,提高定位精度。实验表明,所提出方法相较于无聚类的室内定位方法,能在保证一定精度的前提下,减少定位计算量和时间。此外,将所提出方法与基于K均值、KFCM和CFSFDP的方法进行实验对比,结果显示,该方法具有更好的聚类效果和定位精度。 展开更多
关键词 室内定位 模糊核 加权K近邻 快速搜索和发现峰值
下载PDF
优化分配策略的密度峰值聚类算法 被引量:8
6
作者 丁志成 葛洪伟 《计算机科学与探索》 CSCD 北大核心 2020年第5期792-802,共11页
针对密度峰值聚类算法在面对复杂结构数据集时容易出现分配错误的问题,提出一种优化分配策略的密度峰值聚类算法(ODPC)。新算法首先引入参数积γ,扩大了聚类中心的选取范围;然后使用改进的数据点分配策略,对数据集的数据点进行基于相似... 针对密度峰值聚类算法在面对复杂结构数据集时容易出现分配错误的问题,提出一种优化分配策略的密度峰值聚类算法(ODPC)。新算法首先引入参数积γ,扩大了聚类中心的选取范围;然后使用改进的数据点分配策略,对数据集的数据点进行基于相似度指标MS的重新分配,进一步优化了簇类中点集的分配;最后使用dc近邻法优化识别数据集的噪声点。在人工数据集及UCI真实数据集上的实验均可证明,新算法能够在优化噪声识别的同时,提高复杂流形数据集中数据点分配的正确率,并取得比DPC算法、DenPEHC算法、GDPC算法更好的聚类效果。 展开更多
关键词 密度 快速搜索与发现密度峰值(DPC) 分配策略
下载PDF
密度聚类方法研究 被引量:5
7
作者 赫德军 武欣嵘 俞璐 《通信技术》 2022年第2期135-142,共8页
密度聚类分析方法是经典聚类的一个重要分类,能够发现具有相同密度结构的数据,而不拘泥于数据的凹凸类型和集群形状。基于此,研究了密度聚类方法的发展现状:首先介绍了几种重要的经典密度聚类算法,并对其核心思想、算法流程、算法特性... 密度聚类分析方法是经典聚类的一个重要分类,能够发现具有相同密度结构的数据,而不拘泥于数据的凹凸类型和集群形状。基于此,研究了密度聚类方法的发展现状:首先介绍了几种重要的经典密度聚类算法,并对其核心思想、算法流程、算法特性等进行了分析;其次总结归纳了各个经典密度聚类算法的优缺点、适用场景,介绍了密度聚类算法的实用案例;最后展望了密度聚类算法未来的发展方向。 展开更多
关键词 分析 密度 算法 基于密度的噪声发现方法
下载PDF
DCAD:a Dual Clustering Algorithm for Distributed Spatial Databases 被引量:15
8
作者 ZHOU Jiaogen GUAN Jihong LI Pingxiang 《Geo-Spatial Information Science》 2007年第2期137-144,共8页
Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically... Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically scattered in a geometrical domain, spatial objects may be similar to each other in a non-geometrical domain. Most existing clustering algorithms group spatial datasets into different compact regions in a geometrical domain without considering the aspect of a non-geometrical domain. However, many application scenarios require clustering results in which a cluster has not only high proximity in a geometrical domain, but also high similarity in a non-geometrical domain. This means constraints are imposed on the clustering goal from both geometrical and non-geometrical domains simultaneously. Such a clustering problem is called dual clustering. As distributed clustering applications become more and more popular, it is necessary to tackle the dual clustering problem in distributed databases. The DCAD algorithm is proposed to solve this problem. DCAD consists of two levels of clustering: local clustering and global clustering. First, clustering is conducted at each local site with a local clustering algorithm, and the features of local clusters are extracted clustering is obtained based on those features fective and efficient. Second, local features from each site are sent to a central site where global Experiments on both artificial and real spatial datasets show that DCAD is effective and efficient. 展开更多
关键词 distributed clustering dual clustering distributed spatial database
下载PDF
Theoretical Research on Novel Data Mining Algorithm based on Fuzzy Clustering Theory and Deep Neural Network
9
作者 Ye Li 《International Journal of Technology Management》 2015年第7期109-111,共3页
With the progress of computer technology, data mining has become a hot research area in the computer science community. In this paper, we undertake theoretical research on the novel data mining algorithm based on fuzz... With the progress of computer technology, data mining has become a hot research area in the computer science community. In this paper, we undertake theoretical research on the novel data mining algorithm based on fuzzy clustering theory and deep neural network. The focus of data mining in seeking the visualization methods in the process of data mining, knowledge discovery process can be users to understand, to facilitate human-computer interaction in knowledge discovery process. Inspired by the brain structure layers, neural network researchers have been trying to multilayer neural network research. The experiment result shows that out algorithm is effective and robust. 展开更多
关键词 Fuzzy Clustering Data Mining Deep Neural Network Machine Learning.
下载PDF
Two Stage Fuzzy Clustering Based on Latent Knowledge Discovery and Its Application in the Credit Market
10
作者 Qian Ye 《Journal of Systems Science and Information》 2007年第3期289-296,共8页
The aim of this paper is to adopt two-stage classification methods, and to apply fuzzy clustering analysis for mining data in the credit market in order to reflect the characteristic type knowledge of common nature of... The aim of this paper is to adopt two-stage classification methods, and to apply fuzzy clustering analysis for mining data in the credit market in order to reflect the characteristic type knowledge of common nature of the similar things and different type characteristic knowledge of dissimilar things. First of all, the paper carries on attribute normalization of multi-factors which influence banks credit, computes fuzzy analogical relation coefficient, sets the threshold level to α by considering the competition and social credit risks state in the credit market, and selects borrowers through transfer closure algorithm . Second, it makes initial Classification on samples according to the coefficient characteristic of fuzzy relation; third, it improves fuzzy clustering method which the fussy clustering itself has fuzzy nature and the algorithm. Finally the paper provides a case study about knowledge of credit mining in the financial market. 展开更多
关键词 knowledge discovery fuzzy clustering financial decision-making fuzzy relation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部