期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于多维立方体的聚类算子模型及其应用 被引量:1
1
作者 刘蓉 《长沙理工大学学报(自然科学版)》 CAS 2006年第1期62-66,共5页
从多维立方体数据模型出发,提出了跨多个多维立方体的数据挖掘聚类算子模型,并将基于多维立方体事实物理维度的分类聚类算法,应用于移动通信客户消费行为分析中,提供了消费行为分析的实例和方法.
关键词 多维立方体 聚类算子模型 类算法 消费行为分析
下载PDF
改进聚类排序的多目标优化算法 被引量:1
2
作者 詹金珍 滑维鑫 乔芸 《计算机工程与应用》 CSCD 北大核心 2017年第18期102-107,198,共7页
针对高维多目标优化问题提出一种改进型的聚类排序算法,旨在提升原算法所得解的多样性。对该算法的改进,主要集中在两方面。首先,引入了一种双层权值向量系统。相对于原始权值向量方法,该方法可以建立目标空间当中的内部权值向量。内部... 针对高维多目标优化问题提出一种改进型的聚类排序算法,旨在提升原算法所得解的多样性。对该算法的改进,主要集中在两方面。首先,引入了一种双层权值向量系统。相对于原始权值向量方法,该方法可以建立目标空间当中的内部权值向量。内部向量与边缘权值向量的合并,可以促进整体权值向量的多样性。此外,引入一种新的聚类算子,可避免特定权值向量中附着过多的解。实验结果表明,相对比于原始的聚类排序算法和其他两种对比算法,所提出的算法在不同特性的测试问题上具有较好的性能。 展开更多
关键词 多目标优化 多样性 演化算法 聚类算子
下载PDF
基于空谱联合聚类的改进核协同高光谱异常检测 被引量:9
3
作者 马世欣 刘春桐 +2 位作者 李洪才 何祯鑫 王浩 《光子学报》 EI CAS CSCD 北大核心 2019年第1期155-165,共11页
针对空谱信息中普遍存在的异常干扰现象,提出了基于空谱联合聚类的自适应核协同表示高光谱异常目标探测算法.算法充分发挥了基于密度的聚类算子(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对于异常点的筛选... 针对空谱信息中普遍存在的异常干扰现象,提出了基于空谱联合聚类的自适应核协同表示高光谱异常目标探测算法.算法充分发挥了基于密度的聚类算子(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对于异常点的筛选特性,在DBSCAN聚类去除异常波谱的基础上,采用分波段子集随机投影变换对数据降维处理,以减少谱噪声和谱冗余,并采用DBSCAN聚类消除了局部背景像元中的杂乱点对协同探测算法结果的干扰.研究了背景离散度对核参选择的影响,比较了不同的核估计方法,并提出基于平均差的自适应核协同算法.采用该方法对AVIRIS和ROSIS的三组数据进行仿真实验并与现有算法进行了对比,结果表明该算法表现出较好的探测性能. 展开更多
关键词 高光谱 异常探测 基于密度的聚类算子 自适应核 联合表示理论
下载PDF
多峰搜索的自适应遗传算法 被引量:23
4
作者 刘洪杰 王秀峰 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第2期302-304,310,共4页
对多峰函数问题提出了基于峰值转换和优育子群相结合的遗传搜索策略.主要是:通过变换函数将多峰问题中的所有峰变成“等高”峰,从而保证每个峰都有同等机会被找到;在种群中实施各种遗传操作及近亲排斥策略,以保证种群的多样性;将种群中... 对多峰函数问题提出了基于峰值转换和优育子群相结合的遗传搜索策略.主要是:通过变换函数将多峰问题中的所有峰变成“等高”峰,从而保证每个峰都有同等机会被找到;在种群中实施各种遗传操作及近亲排斥策略,以保证种群的多样性;将种群中适应值超过阈值的个体迁徙形成一个子群,在子群中实施“梯度操作”,对个体进行精细进化.该方法不仅可保证较快地找到所有峰,而且无需对多峰函数做峰的个数已知、峰均匀健分布等任何先验假设.最后与Spears的简单子群法进行了对比实验. 展开更多
关键词 遗传算法 多峰搜索 梯度算子 聚类算子
下载PDF
基于数据挖掘的移动通信客户消费行为分析 被引量:19
5
作者 刘蓉 陈晓红 《计算机应用与软件》 CSCD 北大核心 2006年第2期60-62,130,共4页
从多维立方体数据模型出发,本文提出了跨多个多维立方体的数据挖掘聚类算子模型,并将基于多维立方体事实物理维度的分类聚类算法,应用于移动通信客户消费行为分析中,提供了消费行为分析的实例和方法。
关键词 数据挖掘 聚类算子模型 类算法 消费行为分析 行为分析 移动通信 立方体 数据模型
下载PDF
利用遗传算法搜索多个极值点 被引量:2
6
作者 刘洪杰 王秀峰 王治宝 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2000年第3期17-22,共6页
分析了遗传多峰搜索领域内现有方法的不足 .对传统的遗传算法引入了梯度算子和聚类算子 ,将近似导数平方和的倒数作为评价函数 ,并定义了罚项 .用改进后的遗传算法搜索多峰 .实测结果表明 ,该算法搜索速度明显加快 ,精度有很大提高 .对... 分析了遗传多峰搜索领域内现有方法的不足 .对传统的遗传算法引入了梯度算子和聚类算子 ,将近似导数平方和的倒数作为评价函数 ,并定义了罚项 .用改进后的遗传算法搜索多峰 .实测结果表明 ,该算法搜索速度明显加快 ,精度有很大提高 .对等高等距。 展开更多
关键词 遗传算法 多峰搜索 梯度算子 聚类算子 极值点
下载PDF
一个改进的基于区间值模糊集的双向模糊推理算法 被引量:2
7
作者 丁国治 刘青 《计算机与数字工程》 2002年第6期43-48,共6页
本文引入有序权聚类算子(OWA)到区间值模糊集合的相似度度量中,提出了一种改进的双向模糊推理 算法。为采用此算法,文中给出了区间模糊集的加权匹配方向函数,最后通过一个实例说明算法如何灵活地 体现决策者的决策倾向。
关键词 有序权聚类算子 人工智能 区间值模糊集 双向模糊推理算法
下载PDF
Turnout fault diagnosis based on DBSCAN/PSO-SOM 被引量:3
8
作者 YANG Juhua LI Xutong +1 位作者 XING Dongfeng CHEN Guangwu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期371-378,共8页
In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is prop... In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is proposed.Firstly,the three-phase current curve of the switch machine recorded by the micro-computer monitoring system is dealt with segmentally and then the feature parameters of the three-phase current are calculated according to the action principle of the switch machine.Due to the high dimension of initial features,the DBSCAN algorithm is used to separate the sensitive features of fault diagnosis and construct the diagnostic sensitive feature set.Then,the particle swarm optimization(PSO)algorithm is used to adjust the weight of SOM network to modify the rules to avoid“dead neurons”.Finally,the PSO-SOM network fault classifier is designed to complete the classification and diagnosis of the samples to be tested.The experimental results show that this method can judge the fault mode of switch control circuit with less training samples,and the accuracy of fault diagnosis is higher than that of traditional SOM network. 展开更多
关键词 TURNOUT fault diagnosis density-based spatial clustering of applications with noise(DBSCAN) particle swarm optimization(PSO) self-organizing feature map(SOM)
下载PDF
Free clustering optimal particle probability hypothesis density(PHD) filter
9
作者 李云湘 肖怀铁 +2 位作者 宋志勇 范红旗 付强 《Journal of Central South University》 SCIE EI CAS 2014年第7期2673-2683,共11页
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori... As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments. 展开更多
关键词 multiple target tracking probability hypothesis density filter optimal sampling density particle filter random finite set clustering algorithm state extraction
下载PDF
Clustering Algorithms to Analyze Molecular Dynamics Simulation Trajectories for Complex Chemical and Biological Systems
10
作者 Jun-hui Peng Wei Wang +2 位作者 Ye-qing Yu Han-lin Gu Xuhui Huang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第4期404-420,613,共18页
Molecular dynamics (MD) simulation has become a powerful tool to investigate the structure- function relationship of proteins and other biological macromolecules at atomic resolution and biologically relevant timesc... Molecular dynamics (MD) simulation has become a powerful tool to investigate the structure- function relationship of proteins and other biological macromolecules at atomic resolution and biologically relevant timescales. MD simulations often produce massive datasets con- taining millions of snapshots describing proteins in motion. Therefore, clustering algorithms have been in high demand to be developed and applied to classify these MD snapshots and gain biological insights. There mainly exist two categories of clustering algorithms that aim to group protein conformations into clusters based on the similarity of their shape (geometric clustering) and kinetics (kinetic clustering). In this paper, we review a series of frequently used clustering algorithms applied in MD simulations, including divisive algorithms, ag- glomerative algorithms (single-linkage, complete-linkage, average-linkage, centroid-linkage and ward-linkage), center-based algorithms (K-Means, K-Medoids, K-Centers, and APM), density-based algorithms (neighbor-based, DBSCAN, density-peaks, and Robust-DB), and spectral-based algorithms (PCCA and PCCA+). In particular, differences between geomet- ric and kinetic clustering metrics will be discussed along with the performances of diflhrent clustering algorithms. We note that there does not exist a one-size-fits-all algorithm in the classification of MD datasets. For a specific application, the right choice of clustering algo- rithm should be based on the purpose of clustering, and the intrinsic properties of the MD conformational ensembles. Therefore, a main focus of our review is to describe the merits and limitations of each clustering algorithm. We expect that this review would be helpful to guide researchers to choose appropriate clustering algorithms for their own MD datasets. 展开更多
关键词 Molecular dynamics simulation Clustering algorithms Markov state models Protein dynamics
下载PDF
Research on Image Segmentation Algorithm based on Fuzzy C-mean Clustering
11
作者 Xiaona SONG Zuobing WANG 《International Journal of Technology Management》 2015年第2期28-30,共3页
This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the ... This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation. 展开更多
关键词 Image segmentation Fuzzy clustering Fuzzy c-means Spatial information ANTI-NOISE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部