以矩阵的扰动理论为工具对谱聚类(spectral clustering)进行了分析,通过引入图的权矩阵并对权矩阵的谱和特征向量进行分析,得到了权矩阵的谱与聚类的类数、权矩阵特征值的大小与每一类所含点的个数、以及权矩阵的特征向量与聚类之间的关...以矩阵的扰动理论为工具对谱聚类(spectral clustering)进行了分析,通过引入图的权矩阵并对权矩阵的谱和特征向量进行分析,得到了权矩阵的谱与聚类的类数、权矩阵特征值的大小与每一类所含点的个数、以及权矩阵的特征向量与聚类之间的关系.据此,设计了一个基于权矩阵的无监督谱聚类算法(unsupervised spectral clustering algorithm based on weight matrix,简记为USCAWM),并在模拟点集和实际的数据集上进行了实验,实验结果肯定了理论分析的正确性.展开更多
Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM ...Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.展开更多
High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this prob...High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data.展开更多
Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to ident...Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures.展开更多
The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between c...The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between clustering aggregation and the problem of correlation clustering.The best deterministic approximation algorithm was provided for the variation of the correlation of clustering problem,and showed how sampling can be used to scale the algorithms for large datasets.An extensive empirical evaluation was given for the usefulness of the problem and the solutions.The results show that this method achieves more than 50% reduction in the running time without sacrificing the quality of the clustering.展开更多
In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on comp...In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on competitive leaming. An important property of these algorithms is that they preserve the topological structure of data. This means that data that is close in input distribution is mapped to nearby locations in the network. The FCM algorithm is an algorithm based on soft clustering which means that the different clusters are not necessarily distinct, but may overlap. This clustering method may be very useful in many biological problems, for instance in genetics, where a gene may belong to different clusters. The different algorithms are compared in terms of their visualization of the clustering of proteomic data.展开更多
Most of the earlier work on clustering mainly focused on numeric data whoseinherent geometric properties can be exploited to naturally define distance functions between datapoints. However, data mining applications fr...Most of the earlier work on clustering mainly focused on numeric data whoseinherent geometric properties can be exploited to naturally define distance functions between datapoints. However, data mining applications frequently involve many datasets that also consists ofmixed numeric and categorical attributes. In this paper we present a clustering algorithm which isbased on the k-means algorithm. The algorithm clusters objects with numeric and categoricalattributes in a way similar to k-means. The object similarity measure is derived from both numericand categorical attributes. When applied to numeric data, the algorithm is identical to the k-means.The main result of this paper is to provide a method to update the 'cluster centers' of clusteringobjects described by mixed numeric and categorical attributes in the clustering process to minimizethe clustering cost function. The clustering performance of the algorithm is demonstrated with thetwo well known data sets, namely credit approval and abalone databases.展开更多
文摘以矩阵的扰动理论为工具对谱聚类(spectral clustering)进行了分析,通过引入图的权矩阵并对权矩阵的谱和特征向量进行分析,得到了权矩阵的谱与聚类的类数、权矩阵特征值的大小与每一类所含点的个数、以及权矩阵的特征向量与聚类之间的关系.据此,设计了一个基于权矩阵的无监督谱聚类算法(unsupervised spectral clustering algorithm based on weight matrix,简记为USCAWM),并在模拟点集和实际的数据集上进行了实验,实验结果肯定了理论分析的正确性.
基金The US National Science Foundation (No. CMMI-0408390,CMMI-0644552)the American Chemical Society Petroleum Research Foundation (No.PRF-44468-G9)+3 种基金the Research Fellowship for International Young Scientists (No.51050110143)the Fok Ying-Tong Education Foundation (No.114024)the Natural Science Foundation of Jiangsu Province (No.BK2009015)the Postdoctoral Science Foundation of Jiangsu Province (No.0901005C)
文摘Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.
基金Project(60835005) supported by the National Nature Science Foundation of China
文摘High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data.
文摘Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures.
基金Projects(60873265,60903222) supported by the National Natural Science Foundation of China Project(IRT0661) supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between clustering aggregation and the problem of correlation clustering.The best deterministic approximation algorithm was provided for the variation of the correlation of clustering problem,and showed how sampling can be used to scale the algorithms for large datasets.An extensive empirical evaluation was given for the usefulness of the problem and the solutions.The results show that this method achieves more than 50% reduction in the running time without sacrificing the quality of the clustering.
文摘In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on competitive leaming. An important property of these algorithms is that they preserve the topological structure of data. This means that data that is close in input distribution is mapped to nearby locations in the network. The FCM algorithm is an algorithm based on soft clustering which means that the different clusters are not necessarily distinct, but may overlap. This clustering method may be very useful in many biological problems, for instance in genetics, where a gene may belong to different clusters. The different algorithms are compared in terms of their visualization of the clustering of proteomic data.
文摘Most of the earlier work on clustering mainly focused on numeric data whoseinherent geometric properties can be exploited to naturally define distance functions between datapoints. However, data mining applications frequently involve many datasets that also consists ofmixed numeric and categorical attributes. In this paper we present a clustering algorithm which isbased on the k-means algorithm. The algorithm clusters objects with numeric and categoricalattributes in a way similar to k-means. The object similarity measure is derived from both numericand categorical attributes. When applied to numeric data, the algorithm is identical to the k-means.The main result of this paper is to provide a method to update the 'cluster centers' of clusteringobjects described by mixed numeric and categorical attributes in the clustering process to minimizethe clustering cost function. The clustering performance of the algorithm is demonstrated with thetwo well known data sets, namely credit approval and abalone databases.