期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于聚类PSO算法的舰载机舰面多路径动态规划 被引量:18
1
作者 韩维 司维超 +1 位作者 丁大春 宋岩 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第5期610-614,共5页
对舰载机舰面多路径动态规划问题,提出了基于聚类粒子群(PSO,ParticleSwarm Optimization)算法进行解决的方法.首先建立了舰载机舰面多路径动态规划问题数学模型;其次,在建立航母舰面环境模型、舰载机"凸壳"模型、碰撞检测模... 对舰载机舰面多路径动态规划问题,提出了基于聚类粒子群(PSO,ParticleSwarm Optimization)算法进行解决的方法.首先建立了舰载机舰面多路径动态规划问题数学模型;其次,在建立航母舰面环境模型、舰载机"凸壳"模型、碰撞检测模型的基础上,利用聚类PSO算法进行问题求解;最后,通过编制程序对该解决方法予以实现.仿真结果表明利用聚类PSO算法所求解的结果比较精确,且计算效率也符合实际要求.因此基于聚类PSO算法对舰载机舰面多路径动态规划问题进行求解是可行的. 展开更多
关键词 舰载机 多路径动态规划 聚类粒子群算法算法 优化
下载PDF
Turnout fault diagnosis based on DBSCAN/PSO-SOM 被引量:3
2
作者 YANG Juhua LI Xutong +1 位作者 XING Dongfeng CHEN Guangwu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期371-378,共8页
In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is prop... In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is proposed.Firstly,the three-phase current curve of the switch machine recorded by the micro-computer monitoring system is dealt with segmentally and then the feature parameters of the three-phase current are calculated according to the action principle of the switch machine.Due to the high dimension of initial features,the DBSCAN algorithm is used to separate the sensitive features of fault diagnosis and construct the diagnostic sensitive feature set.Then,the particle swarm optimization(PSO)algorithm is used to adjust the weight of SOM network to modify the rules to avoid“dead neurons”.Finally,the PSO-SOM network fault classifier is designed to complete the classification and diagnosis of the samples to be tested.The experimental results show that this method can judge the fault mode of switch control circuit with less training samples,and the accuracy of fault diagnosis is higher than that of traditional SOM network. 展开更多
关键词 TURNOUT fault diagnosis density-based spatial clustering of applications with noise(DBSCAN) particle swarm optimization(PSO) self-organizing feature map(SOM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部