函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成...函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。展开更多
真实世界多层网络具有多维度、高复杂性的特征,使得仅使用网络拓扑信息进行聚类的算法往往不能精准挖掘网络的公共社区结构。为了解决这一问题,本文提出一种基于非负矩阵分解的半监督模型(Semi-supervised Model with Non-negative Matr...真实世界多层网络具有多维度、高复杂性的特征,使得仅使用网络拓扑信息进行聚类的算法往往不能精准挖掘网络的公共社区结构。为了解决这一问题,本文提出一种基于非负矩阵分解的半监督模型(Semi-supervised Model with Non-negative Matrix Factorization,SeNMF)。首先,该模型设计基于PageRank算法的贪婪搜索方法获取网络的共识先验信息,用以增强每一层网络的拓扑结构,降低网络噪声;然后利用整体非负矩阵分解将所有网络层的低维表示在格拉斯曼流形上融合以获取更优的公共低维表示矩阵;最后利用K-means聚类得到网络的公共社区结构。实验表明,无论是网络层数的增加还是层间噪声的增强,SeNMF模型相较其他算法在多层网络聚类时均具有一定的优越性。展开更多
文摘函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。
文摘真实世界多层网络具有多维度、高复杂性的特征,使得仅使用网络拓扑信息进行聚类的算法往往不能精准挖掘网络的公共社区结构。为了解决这一问题,本文提出一种基于非负矩阵分解的半监督模型(Semi-supervised Model with Non-negative Matrix Factorization,SeNMF)。首先,该模型设计基于PageRank算法的贪婪搜索方法获取网络的共识先验信息,用以增强每一层网络的拓扑结构,降低网络噪声;然后利用整体非负矩阵分解将所有网络层的低维表示在格拉斯曼流形上融合以获取更优的公共低维表示矩阵;最后利用K-means聚类得到网络的公共社区结构。实验表明,无论是网络层数的增加还是层间噪声的增强,SeNMF模型相较其他算法在多层网络聚类时均具有一定的优越性。