期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
基于聚类经验模态分解-样本熵和优化极限学习机的风电功率多步区间预测 被引量:22
1
作者 张亚超 刘开培 +1 位作者 秦亮 方仍存 《电网技术》 EI CSCD 北大核心 2016年第7期2045-2051,共7页
针对风电功率序列的不确定性和随机性特征,提出一种基于聚类经验模态分解-样本熵和优化极限学习机的多步区间预测模型。首先,利用聚类经验模态分解-样本熵方法将原始风电功率序列分解为一系列复杂度差异明显的子序列。然后,分别对各子... 针对风电功率序列的不确定性和随机性特征,提出一种基于聚类经验模态分解-样本熵和优化极限学习机的多步区间预测模型。首先,利用聚类经验模态分解-样本熵方法将原始风电功率序列分解为一系列复杂度差异明显的子序列。然后,分别对各子序列建立基于上下界直接估量的区间预测模型。为分析不同区间构造的差异,提出一种体现训练目标值偏离区间范围影响的新型区间预测评估指标作为目标函数,并采用基于混沌萤火虫结合多策略融合自适应差分进化的优化算法寻求其最优解,以提高模型预测性能。最后,以某一风电场实际功率数据为算例,验证了所提模型能获得可靠优良的多步区间预测结果,可为风电功率多步不确定性预测提供一种新的有效途径。 展开更多
关键词 多步区间预测 聚类经验模态分解-样本熵 极限学习机 多策略自适应差分进化
下载PDF
基于多元经验模态分解互近似熵及GG聚类的轴承故障诊断 被引量:8
2
作者 张淑清 李威 +3 位作者 张立国 胡永涛 钱磊 姜万录 《中国机械工程》 EI CAS CSCD 北大核心 2016年第24期3362-3367,共6页
提出了一种基于多元经验模态分解(Multi-EMD)、互近似熵和GG聚类的滚动故障轴承诊断方法。首先,将振动信号进行多元经验模态分解,得到若干个内禀模态函数(IMF)分量和一个趋势项。然后,将IMF分量分别与原始信号进行相关性分析,筛选出前7... 提出了一种基于多元经验模态分解(Multi-EMD)、互近似熵和GG聚类的滚动故障轴承诊断方法。首先,将振动信号进行多元经验模态分解,得到若干个内禀模态函数(IMF)分量和一个趋势项。然后,将IMF分量分别与原始信号进行相关性分析,筛选出前7个含主要特征信息的IMF分量,并将筛选的IMF分量的互近似熵作为特征向量。最后,将特征向量输入到GG模糊分类器中进行聚类识别。通过聚类三维图,对两种算法机械运行的4种状态进行了对比,验证了多元经验模态分解方法不仅可解决采样的不均衡问题,而且可解决EMD算法聚类的混叠问题。 展开更多
关键词 轴承故障诊断 多元经验模态分解 互近似 GG
下载PDF
基于经验模态分解与多视角聚类的异常用电模式检测 被引量:2
3
作者 王建元 刘柯辰 《电器与能效管理技术》 2023年第3期73-80,共8页
针对现有异常用电检测方法检出效率低下的问题,提出一种基于经验模态与多视角聚类的异常检测方法。遵循“经验模态分解维度制约多视角聚类横向检测纵向检测”的流程,通过多视角聚类结合初步判据,显著提高了检出率。在异常检测算法中,提... 针对现有异常用电检测方法检出效率低下的问题,提出一种基于经验模态与多视角聚类的异常检测方法。遵循“经验模态分解维度制约多视角聚类横向检测纵向检测”的流程,通过多视角聚类结合初步判据,显著提高了检出率。在异常检测算法中,提出基于网格的熵离群因子(Grid-EOF)算法,并基于纵向检测给出新的判据,提高了不明显窃电行为用户的检出率。最后,用国家电网智能电表实测数据检测验证,结果表明多视角聚类和改进算法以及纵向检测的引入,能有效提高异常检测模型的检出率和准确率。 展开更多
关键词 异常用电检测 经验模态分解 多视角 香农
下载PDF
基于聚类经验模态分解(EEMD)的汶川M_S8.0强震动记录时频特性分析 被引量:9
4
作者 李大虎 赖敏 +2 位作者 何强 马新欣 顾勤平 《地震学报》 CSCD 北大核心 2012年第3期350-362,425,共13页
在2008年5月12日汶川MS8.0地震中,四川数字强震台网共获取了133组三分向加速度记录.本文选取了一些不同断层距的台站所获取的强震动记录进行了处理和分析.在数据处理中,采用基于聚类经验模态分解(EEMD)提取信号时频特性的方法,有效获得... 在2008年5月12日汶川MS8.0地震中,四川数字强震台网共获取了133组三分向加速度记录.本文选取了一些不同断层距的台站所获取的强震动记录进行了处理和分析.在数据处理中,采用基于聚类经验模态分解(EEMD)提取信号时频特性的方法,有效获得了信号能量的时频分布,提取了中心频率、Hilbert能量、最大振幅对应的时频等特性,并与傅里叶变换、小波变换进行了对比研究.研究结果表明,对非线性的强震记录采用聚类经验模态分解(EEMD)能抑制经验模态分解(EMD)中存在的模态混叠问题;与傅里叶变换和小波变换相比发现,HHT边际谱在低频处幅值高于傅里叶谱;与小波变换受到所选取的母波强烈影响不同,HHT直接从强震记录中分离出固有模态函数(IMF),更能反映出原始数据的固有特性,Hilbert谱反映出大部分能量都集中在一定的时间和频率范围内,而小波谱的能量却在频率范围内分布较为广泛.因此,基于EEMD的HHT在客观性和分辨率方面都具有明显的优越性,能提取到更多强震加速度记录的时频特性. 展开更多
关键词 经验模态分解 希尔伯特-黄变换 强震动加速度记录 模态混叠 时频特性Hilbert谱
下载PDF
基于聚类经验模态分解的地球天然脉冲电磁场时频与能量谱分析:以芦山Ms7.0地震为例 被引量:7
5
作者 郝国成 龚婷 +3 位作者 董浩斌 V.G.SIBGATULIN 陈忠昌 Alexey KABANOV 《地学前缘》 EI CAS CSCD 北大核心 2015年第5期231-238,共8页
针对地球天然脉冲电磁场信号的非平稳、非线性特点,本文采用基于聚类经验模态分解(EEMD)提取信号时频特性的方法,有效获得了芦山MS7.0地震前地球天然脉冲电磁场信号的时频分布特性、瞬时能量谱、能量集中分布的频段、最大振幅对应的时... 针对地球天然脉冲电磁场信号的非平稳、非线性特点,本文采用基于聚类经验模态分解(EEMD)提取信号时频特性的方法,有效获得了芦山MS7.0地震前地球天然脉冲电磁场信号的时频分布特性、瞬时能量谱、能量集中分布的频段、最大振幅对应的时频分布等特性。对比经验模态分解(EMD)的希尔伯特-黄变换(HHT)方法,EEMD有效抑制了以往EMD分解过程中所出现的模态混叠问题。文章还将EEMD和傅里叶变换、小波变换进行了对比研究。结果表明,对于非平稳的地球天然脉冲电磁场数据,采用EEMD分解的HHT方法更能反映出原始数据的多种固有特性,便于进一步了解地震前地球天然脉冲电磁场的特点。 展开更多
关键词 经验模态分解 希尔伯特-黄变换 时频分析 地球天然脉冲电磁场
下载PDF
基于EEMD样本熵和GK模糊聚类的机械故障识别 被引量:31
6
作者 王书涛 李亮 +1 位作者 张淑清 孙国秀 《中国机械工程》 EI CAS CSCD 北大核心 2013年第22期3036-3040,3044,共6页
针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态... 针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态函数(IMF)分量。其次,通过相关性分析和能量相结合的准则对IMF分量进行筛选,并将筛选出的IMF分量的样本熵组成故障特征向量。最后,将构造的特征向量输入到GK模糊聚类分类器中进行聚类识别。实验及工程实例证明了该方法的有效性和优越性。 展开更多
关键词 总体平均经验模式分解(EEMD) 样本 GK模糊 机械故障识别
下载PDF
变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法 被引量:23
7
作者 姜万录 王浩楠 +2 位作者 朱勇 王振威 董克岩 《中国机械工程》 EI CAS CSCD 北大核心 2017年第10期1215-1220,1226,共7页
提出了一种变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法。首先,对实测振动信号进行处理,得到VMD的参数;然后,对信号进行VMD分解,得到一系列限带内禀模态函数(BIMF)分量,筛选并叠加组成重构信号;第三步,计算重构信... 提出了一种变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法。首先,对实测振动信号进行处理,得到VMD的参数;然后,对信号进行VMD分解,得到一系列限带内禀模态函数(BIMF)分量,筛选并叠加组成重构信号;第三步,计算重构信号的样本熵和均方根值作为特征向量,从而得到训练样本和测试样本的特征向量集;第四步,通过KFCM聚类方法对训练样本特征向量集进行聚类分析,得到四种类型信号的聚类中心;最后根据测试样本特征向量与训练样本聚类中心欧式距离最小的原则识别故障类型。此外,将振动信号用经验模态分解(EMD)方法进行消噪,再用KFCM聚类进行分类识别,将两种方法的识别效果进行对比,结果表明所提方法的故障识别效果要优于EMD消噪和KFCM聚类相结合方法的识别效果。 展开更多
关键词 变分模态分解 核模糊C均值 样本 故障识别
下载PDF
基于EEMD的样本熵的滚动轴承AP聚类故障诊断 被引量:8
8
作者 许凡 方彦军 孔政敏 《仪表技术与传感器》 CSCD 北大核心 2017年第6期129-135,共7页
针对滚动轴承聚类故障诊断需要事先确定聚类数目问题,提出了一种基于总体均值经验模式分解(EEMD)样本熵(SE)的相似近邻传播(AP)聚类故障诊断模型,该模型首先用EEMD方法将滚动轴承振动信号分解为一系列的内禀模式函数(IMFs),其次使用相... 针对滚动轴承聚类故障诊断需要事先确定聚类数目问题,提出了一种基于总体均值经验模式分解(EEMD)样本熵(SE)的相似近邻传播(AP)聚类故障诊断模型,该模型首先用EEMD方法将滚动轴承振动信号分解为一系列的内禀模式函数(IMFs),其次使用相关系数法确定IMF个数,然后使用SE计算其熵值,最后选择第1~3个IMF-SE值作为AP聚类算法的输入。实验结果表明:在没有预先划分聚类数目的情况下,AP聚类方法对滚动轴承的故障诊断效果较好。 展开更多
关键词 总体均值经验模式分解 样本 滚动轴承 故障诊断 AP
下载PDF
基于二次分解和JSO-TCN模型的短期光伏功率预测
9
作者 钟璐 杨华 +4 位作者 李世林 亢丽君 马光文 朱燕梅 黄炜斌 《水力发电》 CAS 2024年第11期74-80,105,共8页
针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然... 针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然后分别计算各分量的样本熵,并通过K-means++聚类为高频、中频和低频3个分量,再利用变分模态分解(VMD)对熵值最高的模态分量进行二次分解;最终将处理后的数据输入到时序卷积网络(TCN)中并采用水母优化算法(JSO)对TCN进行参数优选。以西南地区某光伏电站为例,相比于其他模型,本模型在3类指标上均具有优势,决定系数(R 2)为98.29%、平均绝对误差(MAE)为0.481 MW、均方根误差(RMSE)为0.674 MW。由此可知,基于二次分解和JSO-TCN模型预测精度高、误差小,能够为该地区电网调度提供参考。 展开更多
关键词 光伏功率 预测 自适应噪声完备集合经验模态分解 变分模态分解 样本 K-means++ 水母优化算法 时序卷积网络
下载PDF
基于CEEMDAN多尺度排列熵的轴承故障智能识别Fisher-GG聚类方法 被引量:12
10
作者 熊国良 甄灿壮 +1 位作者 张龙 徐天鹏 《噪声与振动控制》 CSCD 2020年第6期1-7,28,共8页
针对滚动轴承振动信号的非线性、非平稳性以及复杂性,利用自适应噪声完备集合经验模态分解(Complete ensemble empirical decomposition with adaptive noise,CEEMDAN)的自适应降噪优势,结合多尺度排列熵(Multiscale permutation entrop... 针对滚动轴承振动信号的非线性、非平稳性以及复杂性,利用自适应噪声完备集合经验模态分解(Complete ensemble empirical decomposition with adaptive noise,CEEMDAN)的自适应降噪优势,结合多尺度排列熵(Multiscale permutation entropy,MPE)可以反映时间序列在不同尺度上的随机程度以及有效检测到时间序列动力学突变情况等特点,提出一种基于CEEMDAN、多尺度排列熵、Fisher比、GG(Gath-Geva,GG)聚类算法相结合的轴承故障智能识别方法。首先采用CEEMDAN算法对滚动轴承原始信号进行分解,得到若干个含有故障信息的振动信号固有模态函数(Intrinsic mode function,IMF)分量;其次采用峭度准则筛选出一个最优模态分量,并计算其多尺度排列熵值(Multi-scale permutation entropy,MPE);最后,利用Fisher比对MPE特征进行选择,将最终选择的MPE组成特征向量输入到GG聚类模型中,实现滚动轴承故障的智能识别。与其它聚类模型组合方法进行比较的结果证明所提方法在滚动轴承故障识别中的有效性和优越性。 展开更多
关键词 故障诊断 滚动轴承 自适应噪声完备集合经验模态分解 多尺度 Fisher比 GG
下载PDF
基于EEMD模糊熵和GK聚类的信号特征提取方法及应用 被引量:4
11
作者 金梅 李盼 +2 位作者 张立国 金菊 张淑清 《计量学报》 CSCD 北大核心 2015年第5期501-505,共5页
提出了一种基于集合经验模态分解模糊熵和GK聚类相结合的方法,应用于滚动轴承的故障诊断中。首先,利用EEMD方法将故障信号分解成多个本征模态分量来消除模态混叠影响;其次,通过相关性对IMF分量进行筛选,并求取其模糊熵作为特征向... 提出了一种基于集合经验模态分解模糊熵和GK聚类相结合的方法,应用于滚动轴承的故障诊断中。首先,利用EEMD方法将故障信号分解成多个本征模态分量来消除模态混叠影响;其次,通过相关性对IMF分量进行筛选,并求取其模糊熵作为特征向量进行GK聚类分析进行模式识别。在实验分析中,通过模糊熵、样本熵、近似熵3种特征参数的对比,和GK聚类与FCM聚类的对比,证明了该方法的有效性和优越性。 展开更多
关键词 计量学 故障诊断 集合经验模态分解 模糊 GK
下载PDF
基于CEEMDAN-VMD-PSO-LSTM模型的桥梁挠度预测 被引量:2
12
作者 郭永刚 张美霞 +2 位作者 王凯 刘立明 陈卫明 《安全与环境工程》 CAS CSCD 北大核心 2024年第3期150-159,共10页
针对桥梁运行阶段的健康状态监测,构建了CEEMDAN-VMD-PSO-LSTM模型对桥梁挠度进行预测。该模型主要分为二次模态分解平稳化、粒子群优化(PSO)算法和长短期记忆(LSTM)网络预测三大模块,共有5个步骤:①利用自适应噪声完备集合经验模态分解... 针对桥梁运行阶段的健康状态监测,构建了CEEMDAN-VMD-PSO-LSTM模型对桥梁挠度进行预测。该模型主要分为二次模态分解平稳化、粒子群优化(PSO)算法和长短期记忆(LSTM)网络预测三大模块,共有5个步骤:①利用自适应噪声完备集合经验模态分解(CEEMDAN)算法对桥梁原始挠度序列进行初次模态分解,分解为若干本征模态分解函数(IMF);②使用样本熵(SampEn/SE)计算各IMF分量的复杂度,并通过K-means聚类为高频、中频和低频3个IMF分量;③通过变分模态分解(VMD)算法对高频IMF分量进行二次模态分解;④分别对各个IMF分量通过PSO算法得出LSTM最优超参数组合;⑤将各最优超参数分别代入LSTM模型进行训练,并将各预测结果融合为最终的预测结果。结果表明:该预测方法具有最高的预测精度,为智慧桥梁的安全监测监控提供了新的技术方法。 展开更多
关键词 桥梁挠度预测 自适应噪声完备集合经验模态分解 变分模态分解 样本 K-MEANS 粒子群优化 长短期记忆网络
下载PDF
基于经验模态分解及支持向量机的高压隔离开关机械故障诊断方法 被引量:20
13
作者 郭煜敬 陈士刚 +5 位作者 李少华 李洪涛 金光耀 张文涛 张一茗 关永刚 《高压电器》 CAS CSCD 北大核心 2018年第9期12-18,共7页
文中将K-means聚类算法和经验模态分解(empirical mode decomposition,EMD)相结合,对隔离开关机械故障进行诊断。为验证方法的有效性,搭建隔离开关运行状态在线监测系统,在某252 k V隔离开关的操动机构上选定位置安装了传感器,采集了机... 文中将K-means聚类算法和经验模态分解(empirical mode decomposition,EMD)相结合,对隔离开关机械故障进行诊断。为验证方法的有效性,搭建隔离开关运行状态在线监测系统,在某252 k V隔离开关的操动机构上选定位置安装了传感器,采集了机械振动等信号在模拟故障下的大量数据。首先利用小波包降噪方法对信号进行预处理;其次,应用EMD和谱分析方法对振动信号进行经验模态分解,得到IMF分量并将其能量熵作为特征量;然后,通过K-means聚类算法验证了特征提取方式的有效性;最后,通过支持向量机算法(support vector machine,SVM)对样本进行训练,实现了机械故障的准确诊断,验证了该方法的有效性。 展开更多
关键词 高压隔离开关 经验模态分解 能量 支持向量机
下载PDF
基于EMD-SVD的液压系统故障模糊聚类研究 被引量:6
14
作者 钟岳 王钊 +2 位作者 方虎生 殷勤 刘帅 《机电工程技术》 2020年第11期104-108,共5页
针对液压系统常见的泄漏、气穴故障问题,从时域分析和频域分析两个方面建立液压系统故障诊断体系,提出了一种基于EMD-SVD变换的液压机泄漏、气穴故障特征提取方法。通过经验模态函数将各类故障信号分解为8类不同时间尺度的本征模态函数I... 针对液压系统常见的泄漏、气穴故障问题,从时域分析和频域分析两个方面建立液压系统故障诊断体系,提出了一种基于EMD-SVD变换的液压机泄漏、气穴故障特征提取方法。通过经验模态函数将各类故障信号分解为8类不同时间尺度的本征模态函数IMFs,对其中能量集中的前5类IMFs组成的初始向量矩阵进行SVD(奇异值分解)得到特征向量,组成故障特征矩阵。为比较各类故障诊断方法的最终识别效果,实验同时利用小波分析和Hilbert-Huang变换2类方法获得了2类不同特征信号进行对比,最后通过模糊聚类分析对各类特征信号进行样本隶属度计算来判断故障信号所属类别。结果表明,基于EMD-SVD变换的故障特征提取方法取得了最佳识别效果,其识别准确率可达99.3%。 展开更多
关键词 经验模态-奇异值分解 液压系统 特征提取 模糊
下载PDF
基于CEEMD和GG聚类的电能质量扰动识别 被引量:11
15
作者 张淑清 乔永静 +4 位作者 姜安琦 张立国 金梅 姚家琛 穆勇 《计量学报》 CSCD 北大核心 2019年第1期49-57,共9页
提出一种基于完备总体经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和GG(gath-geva)聚类的电能质量扰动识别方法。CEEMD是一种对EEMD(ensemble empirical mode decomposition)的改进算法,其特点是向原始信号中... 提出一种基于完备总体经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和GG(gath-geva)聚类的电能质量扰动识别方法。CEEMD是一种对EEMD(ensemble empirical mode decomposition)的改进算法,其特点是向原始信号中以正负成对的形式加入白噪声,有利于减少重构信号中残余的辅助噪声;且在分解的每一个阶段都加入特殊噪声,计算一个唯一残差以得到每个IMF,因此分解的结果是完整的,优于EEMD。CEEMD不仅有效解决了EEMD的模态混叠的问题,同时也保留了EEMD处理非平稳信号的优势,再将CEEMD分解的IMF分量的互近似熵值作为特征向量输入到GG模糊分类器中进行电能扰动的分类识别。为了验证该方法的有效性,进行了仿真和实测实验,结果表明,该方法有较好的频谱分离效果,且仅需要较少的迭代次数,减轻了计算成本。 展开更多
关键词 计量学 电能质量 扰动识别 总体经验模态分解 互近似 GG
下载PDF
基于HHT和模糊C均值聚类的轴向柱塞泵故障识别 被引量:10
16
作者 姜万录 卢传奇 朱勇 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第2期429-436,共8页
提出了一种基于Hilbert-Huang变换(HHT)和模糊C均值聚类算法相结合的故障识别方法。利用HHT在处理非线性、非平稳信号方面的优势,对采集到的轴向柱塞泵泵壳振动加速度信号进行HHT处理。首先对信号分别进行经验模态分解(EMD)和集总经验... 提出了一种基于Hilbert-Huang变换(HHT)和模糊C均值聚类算法相结合的故障识别方法。利用HHT在处理非线性、非平稳信号方面的优势,对采集到的轴向柱塞泵泵壳振动加速度信号进行HHT处理。首先对信号分别进行经验模态分解(EMD)和集总经验模态分解(EEMD),结合短时最大熵谱分析选取对故障最为敏感的固有模态函数(IMF)分量,再对其分别进行二次分解。然后,采用本文提出的基于局部边际能量谱特征能量的方法求出故障特征向量。最后,采用模糊C均值聚类算法进行故障模式识别。识别结果表明:EEMD比EMD在迭代次数上大幅减少,故障识别准确率有了显著提高。 展开更多
关键词 流体传动与控制 集总经验模态分解 短时最大谱分析 特征向量 模糊C均值
下载PDF
融合CEEMD_MPE和GK模糊聚类的故障识别方法 被引量:5
17
作者 赵荣珍 孙泽金 《振动工程学报》 EI CSCD 北大核心 2020年第3期629-635,共7页
针对转子故障信号非线性、非平稳性的特点,提出了一种基于互补集合经验模态分解、多尺度排列熵和GK聚类的故障特征提取和识别方法。首先采用互补集合经验模态分解对故障信号进行分解,依据相关系数原则,选取相关系数最大的模态分量作为... 针对转子故障信号非线性、非平稳性的特点,提出了一种基于互补集合经验模态分解、多尺度排列熵和GK聚类的故障特征提取和识别方法。首先采用互补集合经验模态分解对故障信号进行分解,依据相关系数原则,选取相关系数最大的模态分量作为分析对象;然后利用多尺度排列熵量化模态分量的故障特征作为特征向量;最后,将经过PCA(Principal Component Analysis)降维后的低维特征集输入到GK模糊聚类算法中进行故障识别分类。将所提方法应用于典型转子实验台的故障特征集,通过分类系数与划分熵对分类效果进行检验,并与其他模式组合方法进行比较。结果表明,本文所提方法能够更有效提取故障特征。 展开更多
关键词 故障诊断 互补集合经验模态分解 多尺度排列 GK模糊
下载PDF
基于ISSA-VMD的滚动轴承早期故障诊断方法 被引量:8
18
作者 刘玉明 刘自然 王鹏博 《机电工程》 CAS 北大核心 2023年第9期1426-1432,共7页
针对滚动轴承早期信号微弱导致故障特征难以提取和故障诊断准确率不高的问题,提出了一种基于改进麻雀搜索算法-变分模态分解(ISSA-VMD)和样本熵(SE)的滚动轴承早期故障特征提取方法。首先,在轴承早期故障诊断过程中,模态分解个数和惩罚... 针对滚动轴承早期信号微弱导致故障特征难以提取和故障诊断准确率不高的问题,提出了一种基于改进麻雀搜索算法-变分模态分解(ISSA-VMD)和样本熵(SE)的滚动轴承早期故障特征提取方法。首先,在轴承早期故障诊断过程中,模态分解个数和惩罚因子的选择对变分模态分解(VMD)的分解效果有着很大的影响,为消除人为选择参数的影响,将麻雀搜索算法(SSA)优化为改进麻雀搜索算法(ISSA),利用ISSA参数优化后的VMD方法对信号进行了分解;然后,计算了敏感固有模态函数(IMF)分量的样本熵,构成了特征向量;最后,将特征向量作为支持向量机(SVM)的输入,进行了滚动轴承早期故障类型的识别。研究结果表明:ISSA-VMD+样本熵特征提取模型的故障诊断准确率为98.3%,与SSA-VMD+样本熵、灰狼优化算法(GWO)-VMD+样本熵、鲸鱼优化算法(WOA)-VMD+样本熵、传统VMD+样本熵、经验模态分解(EMD)+样本熵等特征提取模型相比,故障诊断准确率分别提高了3.3%、6.6%、5%、3.3%、5%;该模型可以准确地提取故障特征,提高故障诊断准确率。 展开更多
关键词 轴承早期故障 故障特征提取 改进麻雀搜索算法-变分模态分解 样本 支持向量机 经验模态分解
下载PDF
EEMD分解在电力系统故障信号检测中的应用 被引量:42
19
作者 陈可 李野 陈澜 《计算机仿真》 CSCD 北大核心 2010年第3期263-266,共4页
针对经验模态分解(EMD)的希尔伯特-黄变换(HHT)在电力系统故障信号检测问题,应用存在的模态混叠会导致扰动信号检测失效,为此提出一种基于聚类经验模型分解(EEMD)的故障信号检测的方法。方法通过多次对目标数据加入随机白噪声序列以保... 针对经验模态分解(EMD)的希尔伯特-黄变换(HHT)在电力系统故障信号检测问题,应用存在的模态混叠会导致扰动信号检测失效,为此提出一种基于聚类经验模型分解(EEMD)的故障信号检测的方法。方法通过多次对目标数据加入随机白噪声序列以保证不同区域信号映射的完整性,并且克服了传统EMD分解造成的模态混叠问题,通过EEMD方法提取信号的固有模态函数(IMF),再进行Hilbert变换,利用Hilbert谱对故障暂态和扰动时刻进行检测,通过瞬时频率实现对故障暂态和扰动时刻的准确定位。通过数字仿真分析表明,方法是准确有效的。 展开更多
关键词 经验模态分解 希尔伯特-黄变换 故障检测
下载PDF
结合EMD和功率谱熵的船舶轴频电场线谱提取 被引量:5
20
作者 程锐 陈聪 姜润翔 《舰船科学技术》 北大核心 2017年第9期159-163,共5页
为实现强海洋背景噪声中的微弱船舶轴频电场信号检测,提出了一种结合经验模态分解(Empirical Mode Decomposition,EMD)和窄带子区间功率谱熵的线谱提取新算法。首先,利用EMD方法从含噪信号中分解出一组有效固有模态函数(Intrinsic Mode ... 为实现强海洋背景噪声中的微弱船舶轴频电场信号检测,提出了一种结合经验模态分解(Empirical Mode Decomposition,EMD)和窄带子区间功率谱熵的线谱提取新算法。首先,利用EMD方法从含噪信号中分解出一组有效固有模态函数(Intrinsic Mode Functions,IMFs),对各有效IMF的功率谱进行子区间划分;其次,定义并计算各子区间的能量峰值熵比(Energy Peak Entropy Ratio,EPER)特征;最后,通过对轴频信号和环境噪声物理特征差异的分析,结合K-均值聚类方法进行特征量的筛选,实现线谱提取。海上实测数据的处理结果表明,相比于直接的功率谱分析,算法的线谱可提取下限降低了6.7 d B。 展开更多
关键词 轴频电场 经验模态分解(EMD) K-均值 能量 线谱提取
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部