To understand better the molecular-level details of ≡Si+ (SC) or ≡SiO- (SOA) ion group to -NH2 teminated poly(amido-amine) dendrimers in the gas phase, density functional theory is used to optimize the minimu...To understand better the molecular-level details of ≡Si+ (SC) or ≡SiO- (SOA) ion group to -NH2 teminated poly(amido-amine) dendrimers in the gas phase, density functional theory is used to optimize the minimum energy and transition state structures with UB3LYP/6- 311G(d) and HF/6-31G levels. The tertiary amine nitrogen and the amide oxygen are found to be the most favorable binding sites. The activation energies of the different active sites and the reaction steps of SC and/or SOA ion group and the amide sites are also analyzed. The stable compounds are formed via the electrostatic interaction and the coordination effect. The orientation of the amide O and the rotation of the branches minimizes the energy of the whole system.展开更多
Four acrylamide polymer flocculants, anionic polyacrylamide P(AA-co-AM), cationic poly- acrylamide P(DMB-co-AM), nonionic polyacrylamide P(AM), and hydrophobical polyacry- lamide P(OA-co-AM) have been prepared...Four acrylamide polymer flocculants, anionic polyacrylamide P(AA-co-AM), cationic poly- acrylamide P(DMB-co-AM), nonionic polyacrylamide P(AM), and hydrophobical polyacry- lamide P(OA-co-AM) have been prepared by copolymerizing with acrylic acid, cationic monomer dimethylethyl (acryloxyethyl) ammonium bromide (DMB) and hydrophobical monomer octadecyl acrylate with acrylamide. The interactions between the flocculants with the (012) surface of alumina crystal (A1203) have been simulated by molecular dynamics method. All the polymers can bind tightly with A1203 crystal, the interaction between the O of polymers and A1 of the (012) surface of A1203 is significantly strong. The order of binding energy is as follows: P(DMB-co-AM)〉P(OA-co-AM)〉P(AA-co-AM)〉P(AM), implying a better flocculation performance of P(DMB-co-AM) than the others. Analy- sis indicates that binding energy is mainly determined by Coulomb interaction. Bonds are found between the O atoms of the polymers and the A1 atoms of A1203. The poly- mers' structures deform when they combine with A1203 crystal, but the deformation en- ergies are low and far less than non-bonding energies. Flocculation experiments in sus- pension medium of l%Kaolin show a transmittancy of 90.8% for 6 mg/L P(DMB-co-AM) and 73.0% for P(AM). The sequence of flocculation performance of four polymers is P(DMB-co-AM)〉P(OA-co-AM)〉P(AA-co-AM)〉P(AM), which is in excellent agreement with the simulation results of binding energy.展开更多
The integration of electronic components and the popularity of flexible devices have come up with higher expectations for the heat dissipation capability and comprehensive mechanical performance of thermal management ...The integration of electronic components and the popularity of flexible devices have come up with higher expectations for the heat dissipation capability and comprehensive mechanical performance of thermal management materials.In this work,after the modification of polyimide(PI)fibers through oxidation and amination,the obtained PDA@OPI fibers(polydopamine(PDA)-modified pre-oxidized PI fibers)with abundant amino groups were mixed into graphene oxide(GO)to form uniform GO-PDA@OPI composites.Followed by evaporation,carbonization,graphitization and mechanical compaction,the G-gPDA@OPI films with a stable three-dimensional(3D)long-range interconnected covalent structure were built.In particular,due to the rich covalent bonds between GO layers and PDI@OPI fibers,the enhanced synergistic graphitization promotes an ordered graphitized structure with less interlayer distance between adjacent graphene sheets in composite film.As a result,the optimized G-gPDA@OPI film displays an improved tensile strength of 78.5 MPa,tensile strain of 19.4%and thermal conductivity of 1028 W/(m·K).Simultaneously,it also shows superior flexibility and high resilience.This work provides an easily-controlled and relatively low-cost route for fabricating multifunctional graphene heat dissipation films.展开更多
Two aromatic polyimides were prepared by two- step way. Firstly, the poly(amic acid)s were synthesized from 1, 3 - bis(4 - aminophenoxy)benzene and two different aromatic dianhydrides. Secondly, polyimides were pr...Two aromatic polyimides were prepared by two- step way. Firstly, the poly(amic acid)s were synthesized from 1, 3 - bis(4 - aminophenoxy)benzene and two different aromatic dianhydrides. Secondly, polyimides were prepared via thermal imidization of poly(amic acid) precursors. The polyimides prepared were insoluble in common organic solvents such as tetrahydrofuran, chloroform and N, N- dimethyiformamide. The inherent viscosities of poly(amic acid)s were 1.82 dL/g and 2.67 dL/g. The high inherent viscosities were due to the strong intra- or intermolecular hydrogen interaction. The polyimides were characterized by mechanical and thermal analysis. It was found that the samples are of excellent thermal stability, higher glass-transition temperature and excellent dynamic mechanical and thermal properties.展开更多
The separate-layer injection in different interlayers and the injection of the same-molecular-weight polymer so- lution in a layer are necessary in the polymer flooding process because of heterogeneous multilayer sand...The separate-layer injection in different interlayers and the injection of the same-molecular-weight polymer so- lution in a layer are necessary in the polymer flooding process because of heterogeneous multilayer sandstone reservoirs in EOR projects. To alleviate the matching problems between the layer permeability and the injected polymer molecular weight, a molecular weight adjusting device with porous medium was designed on the basis of mechanical degradation principle. In terms of four variables (polymer concentration, pore diameter, length of shear component and flow rate ), the theological behavior of hydrolyzed polyacrylamide (HPAM) solu- tion flowing through the device was investigated in detail. The change of these variables is able to control the shear rate of HPAM solutions through ceramic foam, and achieve the desired degree of shear degradation and the final theological parameters-viscosity loss, viscoelasticity and pressure drop. Therefore, a linear relationship between viscosity loss and shearing rate was established so as to obtain the targeted viscosity easily. Field tests in the Daqing Oil Field showed that the polymer molecular weight could drop 20% to 50%. In a word, the results could guide the industrial application of the novel device and the further study of polymer degradation flowing through the porous medium.展开更多
Polymers are high molecular weight molecules that provide high viscosity at low concentrations to the media they are inserted. In the oil industry, they are used for enhanced oil recovery and for drilling fluids, wher...Polymers are high molecular weight molecules that provide high viscosity at low concentrations to the media they are inserted. In the oil industry, they are used for enhanced oil recovery and for drilling fluids, where its viscosity is an important factor for a greater efficiency. From all the polymers used by industry, the polyacrylamide and the biopolymer xantham gum are those, which appear significantly in those applications. Taking that into consideration, this work intends to study the effects of the physical, chemical and structural parameters of those polymers in their rheological behaviour, by varying their concentrations from 400 ppm to 2,000 ppm and their temperatures from 298 K to 328 K, which are values similar to those found in the field. For that, a Brookfield Viscometer-Brookfield Engineering Labs rheometer was used. The results acquired showed that the increase on the polyacrylamides ionicity generates and increase on the medium viscosity. For the temperature, its increase causes a reduction of viscosity for the low ionicity polyacrylamides, while increases the viscosity for the high ionicity ones. In the comparative study between xantham gum and polyacrylamides, it was possible to notice that, even though the biopolymer is more complex, its viscosity still is lower when compared to the polyacrylamides.展开更多
Poly (amidoamine) dendrimers are emerging as versatile and derivatizable nano-scale drug delivery vehicles. In our study, cis-4,7,10,13,16,19-docosahexenoic acid and doxorubicin were conjugated to generation 2.5 PAM...Poly (amidoamine) dendrimers are emerging as versatile and derivatizable nano-scale drug delivery vehicles. In our study, cis-4,7,10,13,16,19-docosahexenoic acid and doxorubicin were conjugated to generation 2.5 PAMAM. The molecular architecture of the carrier was designed for optimized blood circulation and optimized drug release through the use of pH-sensitive hydrazone linkages. In vitro, DHA-PAMAM-DOX conjugates were able to release twice as much doxorubicin at pH 4.5 (lysosomal pH) as at pH 7.4, ensuring more pronounced antitumor activity. Upon intravenous administration to ICR mice, the DHA-PAMAM-DOX delivery systems resulted in more plasma exposure of doxorubicin than free doxorubicin solution. In efficacy studies performed with B6D2F1 mice bearing B16 melanoma tumors, DHA-PAMAM-DOX was significantly more efficient in inhibiting tumor growth than free doxorubicin at the dose equivalent to 5 mg/kg doxorubicin. Our research provides evidence that DHA-PAMAM-DOX conjugates have the potential to enhance the effect of cancer therapy in the course of delivering anticancer drugs to their target sites.展开更多
Signal drift and performance instability of brain-computer interface devices induced by the interface failure between rigid metal electrodes and soft human skin hinder the precise data acquisition of electroencephalog...Signal drift and performance instability of brain-computer interface devices induced by the interface failure between rigid metal electrodes and soft human skin hinder the precise data acquisition of electroencephalogram(EEG).Thus,it is desirable to achieve a robust interface for brain-computer interface devices.Here,a kind of polydopamine methacrylamide-polyacrylamide(PDMA-PAAM)hydrogel is developed.To improve the adhesion,dopamine is introduced into the polyacrylamide hydrogel,through the amino and catechol groups of dopamine in an organic-inorganic interface to build a covalent and non-covalent interaction.A strong attachment and an effective modulus transition system can be formed between the metal electrodes and human skin,so that the peeling force between the PDMAPAAM hydrogel and the porcine skin can reach 22 N m^(-1).In addition,the stable conductivity and long-term operating life of the PDMA-PAAM hydrogel for more than 60 days at room temperature are achieved by adding sodium chloride(NaCl)and glycerol,respectively.The PDMA-PAAM hydrogel membrane fabricated in this work is integrated onto a flexible Au electrode applied in a brain-computer interface.In comparison,the collected EEG signal intensity and waveform are consistent with that of the commercial counterparts.And obviously,the flexible electrode with PDMA-PAAM hydrogel membrane is demonstrated to enable a more stable and userfriendly interface.展开更多
文摘To understand better the molecular-level details of ≡Si+ (SC) or ≡SiO- (SOA) ion group to -NH2 teminated poly(amido-amine) dendrimers in the gas phase, density functional theory is used to optimize the minimum energy and transition state structures with UB3LYP/6- 311G(d) and HF/6-31G levels. The tertiary amine nitrogen and the amide oxygen are found to be the most favorable binding sites. The activation energies of the different active sites and the reaction steps of SC and/or SOA ion group and the amide sites are also analyzed. The stable compounds are formed via the electrostatic interaction and the coordination effect. The orientation of the amide O and the rotation of the branches minimizes the energy of the whole system.
文摘Four acrylamide polymer flocculants, anionic polyacrylamide P(AA-co-AM), cationic poly- acrylamide P(DMB-co-AM), nonionic polyacrylamide P(AM), and hydrophobical polyacry- lamide P(OA-co-AM) have been prepared by copolymerizing with acrylic acid, cationic monomer dimethylethyl (acryloxyethyl) ammonium bromide (DMB) and hydrophobical monomer octadecyl acrylate with acrylamide. The interactions between the flocculants with the (012) surface of alumina crystal (A1203) have been simulated by molecular dynamics method. All the polymers can bind tightly with A1203 crystal, the interaction between the O of polymers and A1 of the (012) surface of A1203 is significantly strong. The order of binding energy is as follows: P(DMB-co-AM)〉P(OA-co-AM)〉P(AA-co-AM)〉P(AM), implying a better flocculation performance of P(DMB-co-AM) than the others. Analy- sis indicates that binding energy is mainly determined by Coulomb interaction. Bonds are found between the O atoms of the polymers and the A1 atoms of A1203. The poly- mers' structures deform when they combine with A1203 crystal, but the deformation en- ergies are low and far less than non-bonding energies. Flocculation experiments in sus- pension medium of l%Kaolin show a transmittancy of 90.8% for 6 mg/L P(DMB-co-AM) and 73.0% for P(AM). The sequence of flocculation performance of four polymers is P(DMB-co-AM)〉P(OA-co-AM)〉P(AA-co-AM)〉P(AM), which is in excellent agreement with the simulation results of binding energy.
基金Projects(51971089, 51872087) supported by the National Natural Science Foundation of ChinaProject(2020JJ5021)supported by the Natural Science Foundation of Hunan Province,ChinaProject(kq1804010) supported by the Major Science and Technology Program of Changsha,China。
文摘The integration of electronic components and the popularity of flexible devices have come up with higher expectations for the heat dissipation capability and comprehensive mechanical performance of thermal management materials.In this work,after the modification of polyimide(PI)fibers through oxidation and amination,the obtained PDA@OPI fibers(polydopamine(PDA)-modified pre-oxidized PI fibers)with abundant amino groups were mixed into graphene oxide(GO)to form uniform GO-PDA@OPI composites.Followed by evaporation,carbonization,graphitization and mechanical compaction,the G-gPDA@OPI films with a stable three-dimensional(3D)long-range interconnected covalent structure were built.In particular,due to the rich covalent bonds between GO layers and PDI@OPI fibers,the enhanced synergistic graphitization promotes an ordered graphitized structure with less interlayer distance between adjacent graphene sheets in composite film.As a result,the optimized G-gPDA@OPI film displays an improved tensile strength of 78.5 MPa,tensile strain of 19.4%and thermal conductivity of 1028 W/(m·K).Simultaneously,it also shows superior flexibility and high resilience.This work provides an easily-controlled and relatively low-cost route for fabricating multifunctional graphene heat dissipation films.
基金the Key Natural Science Foundation of Shanghai (No.02ZA14004)
文摘Two aromatic polyimides were prepared by two- step way. Firstly, the poly(amic acid)s were synthesized from 1, 3 - bis(4 - aminophenoxy)benzene and two different aromatic dianhydrides. Secondly, polyimides were prepared via thermal imidization of poly(amic acid) precursors. The polyimides prepared were insoluble in common organic solvents such as tetrahydrofuran, chloroform and N, N- dimethyiformamide. The inherent viscosities of poly(amic acid)s were 1.82 dL/g and 2.67 dL/g. The high inherent viscosities were due to the strong intra- or intermolecular hydrogen interaction. The polyimides were characterized by mechanical and thermal analysis. It was found that the samples are of excellent thermal stability, higher glass-transition temperature and excellent dynamic mechanical and thermal properties.
基金Supported by the Program for Yangtse River Scholars and Innovative Research Terms in Universities(IRT0936)the National Basic Research Program of China(2009CB219905+2 种基金2009CB219907)the Daqing Oilfield Co.Ltd
文摘The separate-layer injection in different interlayers and the injection of the same-molecular-weight polymer so- lution in a layer are necessary in the polymer flooding process because of heterogeneous multilayer sandstone reservoirs in EOR projects. To alleviate the matching problems between the layer permeability and the injected polymer molecular weight, a molecular weight adjusting device with porous medium was designed on the basis of mechanical degradation principle. In terms of four variables (polymer concentration, pore diameter, length of shear component and flow rate ), the theological behavior of hydrolyzed polyacrylamide (HPAM) solu- tion flowing through the device was investigated in detail. The change of these variables is able to control the shear rate of HPAM solutions through ceramic foam, and achieve the desired degree of shear degradation and the final theological parameters-viscosity loss, viscoelasticity and pressure drop. Therefore, a linear relationship between viscosity loss and shearing rate was established so as to obtain the targeted viscosity easily. Field tests in the Daqing Oil Field showed that the polymer molecular weight could drop 20% to 50%. In a word, the results could guide the industrial application of the novel device and the further study of polymer degradation flowing through the porous medium.
文摘Polymers are high molecular weight molecules that provide high viscosity at low concentrations to the media they are inserted. In the oil industry, they are used for enhanced oil recovery and for drilling fluids, where its viscosity is an important factor for a greater efficiency. From all the polymers used by industry, the polyacrylamide and the biopolymer xantham gum are those, which appear significantly in those applications. Taking that into consideration, this work intends to study the effects of the physical, chemical and structural parameters of those polymers in their rheological behaviour, by varying their concentrations from 400 ppm to 2,000 ppm and their temperatures from 298 K to 328 K, which are values similar to those found in the field. For that, a Brookfield Viscometer-Brookfield Engineering Labs rheometer was used. The results acquired showed that the increase on the polyacrylamides ionicity generates and increase on the medium viscosity. For the temperature, its increase causes a reduction of viscosity for the low ionicity polyacrylamides, while increases the viscosity for the high ionicity ones. In the comparative study between xantham gum and polyacrylamides, it was possible to notice that, even though the biopolymer is more complex, its viscosity still is lower when compared to the polyacrylamides.
基金China International Science and Technology Cooperation Program for Key Projects (Grant No. 2008DFA31070)
文摘Poly (amidoamine) dendrimers are emerging as versatile and derivatizable nano-scale drug delivery vehicles. In our study, cis-4,7,10,13,16,19-docosahexenoic acid and doxorubicin were conjugated to generation 2.5 PAMAM. The molecular architecture of the carrier was designed for optimized blood circulation and optimized drug release through the use of pH-sensitive hydrazone linkages. In vitro, DHA-PAMAM-DOX conjugates were able to release twice as much doxorubicin at pH 4.5 (lysosomal pH) as at pH 7.4, ensuring more pronounced antitumor activity. Upon intravenous administration to ICR mice, the DHA-PAMAM-DOX delivery systems resulted in more plasma exposure of doxorubicin than free doxorubicin solution. In efficacy studies performed with B6D2F1 mice bearing B16 melanoma tumors, DHA-PAMAM-DOX was significantly more efficient in inhibiting tumor growth than free doxorubicin at the dose equivalent to 5 mg/kg doxorubicin. Our research provides evidence that DHA-PAMAM-DOX conjugates have the potential to enhance the effect of cancer therapy in the course of delivering anticancer drugs to their target sites.
基金supported by the National Natural Science Foundation of China(U20A6001,11921002,and 11902292)Zhejiang Province Key Research and Development Project(2021C01183,2020C05004,and 2021C05007-4)the Natural Science Foundation of Zhejiang Province of China(LQ19E030003)。
文摘Signal drift and performance instability of brain-computer interface devices induced by the interface failure between rigid metal electrodes and soft human skin hinder the precise data acquisition of electroencephalogram(EEG).Thus,it is desirable to achieve a robust interface for brain-computer interface devices.Here,a kind of polydopamine methacrylamide-polyacrylamide(PDMA-PAAM)hydrogel is developed.To improve the adhesion,dopamine is introduced into the polyacrylamide hydrogel,through the amino and catechol groups of dopamine in an organic-inorganic interface to build a covalent and non-covalent interaction.A strong attachment and an effective modulus transition system can be formed between the metal electrodes and human skin,so that the peeling force between the PDMAPAAM hydrogel and the porcine skin can reach 22 N m^(-1).In addition,the stable conductivity and long-term operating life of the PDMA-PAAM hydrogel for more than 60 days at room temperature are achieved by adding sodium chloride(NaCl)and glycerol,respectively.The PDMA-PAAM hydrogel membrane fabricated in this work is integrated onto a flexible Au electrode applied in a brain-computer interface.In comparison,the collected EEG signal intensity and waveform are consistent with that of the commercial counterparts.And obviously,the flexible electrode with PDMA-PAAM hydrogel membrane is demonstrated to enable a more stable and userfriendly interface.