以4,4-二氯代苯酰亚胺和硫化钠为单体,采用溶液缩聚法制备了新型聚芳硫醚树脂,聚芳硫醚酰亚胺(PA S I),在聚芳硫醚的主链中引入刚性的酰亚胺环结构。通过红外、核磁、紫外对聚合物的结构进行了初步表征,通过DSC、TG初步测试了聚合物的...以4,4-二氯代苯酰亚胺和硫化钠为单体,采用溶液缩聚法制备了新型聚芳硫醚树脂,聚芳硫醚酰亚胺(PA S I),在聚芳硫醚的主链中引入刚性的酰亚胺环结构。通过红外、核磁、紫外对聚合物的结构进行了初步表征,通过DSC、TG初步测试了聚合物的热性能,通过X射线衍射初步表征了聚合物的结晶性。表征结果表明,聚合物为设计聚芳硫醚酰亚胺结构;X射线衍射表明聚合物为结晶性聚合物;热性能测试表明,聚合物的玻璃化温度为101.91℃,高于聚苯硫醚(87.00℃),聚合物具有良好的热性能。展开更多
Two aromatic polyimides were prepared by two- step way. Firstly, the poly(amic acid)s were synthesized from 1, 3 - bis(4 - aminophenoxy)benzene and two different aromatic dianhydrides. Secondly, polyimides were pr...Two aromatic polyimides were prepared by two- step way. Firstly, the poly(amic acid)s were synthesized from 1, 3 - bis(4 - aminophenoxy)benzene and two different aromatic dianhydrides. Secondly, polyimides were prepared via thermal imidization of poly(amic acid) precursors. The polyimides prepared were insoluble in common organic solvents such as tetrahydrofuran, chloroform and N, N- dimethyiformamide. The inherent viscosities of poly(amic acid)s were 1.82 dL/g and 2.67 dL/g. The high inherent viscosities were due to the strong intra- or intermolecular hydrogen interaction. The polyimides were characterized by mechanical and thermal analysis. It was found that the samples are of excellent thermal stability, higher glass-transition temperature and excellent dynamic mechanical and thermal properties.展开更多
文摘以4,4-二氯代苯酰亚胺和硫化钠为单体,采用溶液缩聚法制备了新型聚芳硫醚树脂,聚芳硫醚酰亚胺(PA S I),在聚芳硫醚的主链中引入刚性的酰亚胺环结构。通过红外、核磁、紫外对聚合物的结构进行了初步表征,通过DSC、TG初步测试了聚合物的热性能,通过X射线衍射初步表征了聚合物的结晶性。表征结果表明,聚合物为设计聚芳硫醚酰亚胺结构;X射线衍射表明聚合物为结晶性聚合物;热性能测试表明,聚合物的玻璃化温度为101.91℃,高于聚苯硫醚(87.00℃),聚合物具有良好的热性能。
基金the Key Natural Science Foundation of Shanghai (No.02ZA14004)
文摘Two aromatic polyimides were prepared by two- step way. Firstly, the poly(amic acid)s were synthesized from 1, 3 - bis(4 - aminophenoxy)benzene and two different aromatic dianhydrides. Secondly, polyimides were prepared via thermal imidization of poly(amic acid) precursors. The polyimides prepared were insoluble in common organic solvents such as tetrahydrofuran, chloroform and N, N- dimethyiformamide. The inherent viscosities of poly(amic acid)s were 1.82 dL/g and 2.67 dL/g. The high inherent viscosities were due to the strong intra- or intermolecular hydrogen interaction. The polyimides were characterized by mechanical and thermal analysis. It was found that the samples are of excellent thermal stability, higher glass-transition temperature and excellent dynamic mechanical and thermal properties.