Polyhydroquinone (PHQ) is a redox-active polymer with quinone/hydroquinone redox active units in the main chain and may have potential applications as a mediator in biosensors and biofuel cells. By the oxidative polym...Polyhydroquinone (PHQ) is a redox-active polymer with quinone/hydroquinone redox active units in the main chain and may have potential applications as a mediator in biosensors and biofuel cells. By the oxidative polymerization of hydroquinone (HQ), PHQ can be easily synthesized, but the reaction lacks control over the structure of the product. Deoxycholic acid (DCA) was introduced as a supramolecular template to control the reaction. The reaction rate is 14 times of that in deionized water and twice of that in buffer. The DCA template increases not only the reaction rate, but also the molecular weight of the polymer obtained. The template effect of DCA was attributed to the supramolecular assemblies of DCA formed in the solution. Cyclic voltammetry study indicated the resulting PHQ was redox-active. While the supramolecular assemblies of DCA provided a template for the oxidative polymerization of HQ, the protons released as a by-product of the oxidative polymerization of HQ in turn enhanced the self-assembly of DCA. As a result, DCA microfibers form and separate out of the solution.展开更多
基金support from the National Natural Science Foundation of China (20974049)the Ministry of Science and Technology of China (2007DFA50760)+1 种基金Tianjin Committee of Science and Technology (10JCYBJC02000)the Canada Research Chair Program
文摘Polyhydroquinone (PHQ) is a redox-active polymer with quinone/hydroquinone redox active units in the main chain and may have potential applications as a mediator in biosensors and biofuel cells. By the oxidative polymerization of hydroquinone (HQ), PHQ can be easily synthesized, but the reaction lacks control over the structure of the product. Deoxycholic acid (DCA) was introduced as a supramolecular template to control the reaction. The reaction rate is 14 times of that in deionized water and twice of that in buffer. The DCA template increases not only the reaction rate, but also the molecular weight of the polymer obtained. The template effect of DCA was attributed to the supramolecular assemblies of DCA formed in the solution. Cyclic voltammetry study indicated the resulting PHQ was redox-active. While the supramolecular assemblies of DCA provided a template for the oxidative polymerization of HQ, the protons released as a by-product of the oxidative polymerization of HQ in turn enhanced the self-assembly of DCA. As a result, DCA microfibers form and separate out of the solution.