采用循环伏安法、微分脉冲伏安法、交流阻抗谱以及计时电流法等电化学方法,结合红外光谱、紫外-可见分光光度法、原子力显微镜、透射电子显微镜以及原子吸收光谱等辅助手段,表征了固定漆酶的聚苯胺-草酸钴纳米复合物的化学组成、结构和...采用循环伏安法、微分脉冲伏安法、交流阻抗谱以及计时电流法等电化学方法,结合红外光谱、紫外-可见分光光度法、原子力显微镜、透射电子显微镜以及原子吸收光谱等辅助手段,表征了固定漆酶的聚苯胺-草酸钴纳米复合物的化学组成、结构和形貌,测试了纳米复合物固酶前后的导电性能的变化,研究了纳米复合物修饰电极上固定漆酶的直接电化学行为,评估了该电极的催化氧还原效能以及作为电化学传感器检测氧分子的性能。实验结果表明该电极在不含电子介体的溶液中以酶活性中心T2作为首要电子受体,将得到电子传递给化学吸附的氧气使其被电还原,其表观电子迁移速率为0.017 s^(-1),且具有良好的催化氧还原性能(氧还原起始电位:460 m V vs NHE,转化氧分子为水的表观速率常数为2.6×10-4 s^(-1)),酶电催化氧还原为水分子步骤为反应的速控步。该电极作为电化学传感器对氧具有极低检测限(0.20μmol·L^(-1)),宽线性响应范围(0.4~7.5μmol·L^(-1))以及对底物高亲和力(KM=122.4μmol·L^(-1))等优势。展开更多
Polyaniline (PANI)/silver composite was one-step synthesized under γ-ray irradiation. The structure of the composite was characterized by Fourier transform infrared spectroscopy, UV-Visible, and X-ray diffraction, ...Polyaniline (PANI)/silver composite was one-step synthesized under γ-ray irradiation. The structure of the composite was characterized by Fourier transform infrared spectroscopy, UV-Visible, and X-ray diffraction, which indicated that PANI and face-centered-cubic silver were synthesized under γ-ray irradiation. The reaction mechanism were discussed, which revealed that the PANI was formed by the reaction of aniline cation radicals formed by the reaction of aniline cation and -OH, and Ag was formed by the reaction of Ag+ and eaq. The morphology of the composite consisted of PANI nanofibers and Ag nanoparticles, and the mechanism of the morphology formation was discussed, which revealed that the rapid mixing like polymerization process might play an important role. It was revealed that the transport behavior of the composite well fitted with the variable-range-hopping model in 80-300 K and deviated from the model below 80 K.展开更多
A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voitammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and ...A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voitammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and 0.2 mol/L aniline. The PGCF GOD electrode was prepared by doping GOD into the composite film. The morphology of the PGCF and the response property of the PGCF GOD electrode were investigated by scanning electron microscopy and electrochemical measurement, respectively. The results show that the PGCF has a porous and netty structure and the PGCF GOD electrode has excellent response property such as high sensitivity and short response time. Influences of pH value, temperature, glucose concentration and potential on the response current of the electrode were also discussed. The sensor has a maximum steady-state current density of 357.17μA/cm2 and an apparent Michaelis-Menten constant of 16.57 mmol/L. The maximum current response of the enzyme electrode occurs under the condition ofpH 5.5, 0.8 V and 65℃.展开更多
文摘采用循环伏安法、微分脉冲伏安法、交流阻抗谱以及计时电流法等电化学方法,结合红外光谱、紫外-可见分光光度法、原子力显微镜、透射电子显微镜以及原子吸收光谱等辅助手段,表征了固定漆酶的聚苯胺-草酸钴纳米复合物的化学组成、结构和形貌,测试了纳米复合物固酶前后的导电性能的变化,研究了纳米复合物修饰电极上固定漆酶的直接电化学行为,评估了该电极的催化氧还原效能以及作为电化学传感器检测氧分子的性能。实验结果表明该电极在不含电子介体的溶液中以酶活性中心T2作为首要电子受体,将得到电子传递给化学吸附的氧气使其被电还原,其表观电子迁移速率为0.017 s^(-1),且具有良好的催化氧还原性能(氧还原起始电位:460 m V vs NHE,转化氧分子为水的表观速率常数为2.6×10-4 s^(-1)),酶电催化氧还原为水分子步骤为反应的速控步。该电极作为电化学传感器对氧具有极低检测限(0.20μmol·L^(-1)),宽线性响应范围(0.4~7.5μmol·L^(-1))以及对底物高亲和力(KM=122.4μmol·L^(-1))等优势。
文摘Polyaniline (PANI)/silver composite was one-step synthesized under γ-ray irradiation. The structure of the composite was characterized by Fourier transform infrared spectroscopy, UV-Visible, and X-ray diffraction, which indicated that PANI and face-centered-cubic silver were synthesized under γ-ray irradiation. The reaction mechanism were discussed, which revealed that the PANI was formed by the reaction of aniline cation radicals formed by the reaction of aniline cation and -OH, and Ag was formed by the reaction of Ag+ and eaq. The morphology of the composite consisted of PANI nanofibers and Ag nanoparticles, and the mechanism of the morphology formation was discussed, which revealed that the rapid mixing like polymerization process might play an important role. It was revealed that the transport behavior of the composite well fitted with the variable-range-hopping model in 80-300 K and deviated from the model below 80 K.
基金Projects(50473022, 20673036) supported by the National Natural Science Foundation of China project(2005) supported by the State Key Laboratory of Chemo/Biosensing and Chemometrics of China+1 种基金 project(2006FJ4100) supported by the Science Technology Project of Hunan Province project(2006) supported by the Postdoctor Foundation of Hunan University
文摘A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voitammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and 0.2 mol/L aniline. The PGCF GOD electrode was prepared by doping GOD into the composite film. The morphology of the PGCF and the response property of the PGCF GOD electrode were investigated by scanning electron microscopy and electrochemical measurement, respectively. The results show that the PGCF has a porous and netty structure and the PGCF GOD electrode has excellent response property such as high sensitivity and short response time. Influences of pH value, temperature, glucose concentration and potential on the response current of the electrode were also discussed. The sensor has a maximum steady-state current density of 357.17μA/cm2 and an apparent Michaelis-Menten constant of 16.57 mmol/L. The maximum current response of the enzyme electrode occurs under the condition ofpH 5.5, 0.8 V and 65℃.