Nano-ZnO particle (nZnOp) reinforced polyethylene glycol (PEG)/polyethylene terephthalate (PET) (nZnOp/PEG/PET) copolymeric composites with different mass fractions and molecular weights of PEG are synthesized...Nano-ZnO particle (nZnOp) reinforced polyethylene glycol (PEG)/polyethylene terephthalate (PET) (nZnOp/PEG/PET) copolymeric composites with different mass fractions and molecular weights of PEG are synthesized via in-situ polymerization. The dispersion of nZnOp in copolymer matrixes and the effects of PEG and nZnOp particles on the crystallization behavior of the composites are studied by TEM, differential scanning calorimetry(DSC), XRD and Fourier thansform infrared spectroscopy (FTIR ). The results reveal that nZnOp particles are dispersed in the matrixes with nano-scale, and the addition of PEG induces more homogeneous dispersion of nZnOp. Simultaneously, these nanoparticles become nucleating centers during the crystallization of the matrixes. PEG segments can improve the flexibility of the PET molecular chain, resulting in the drop of the cold crystallization temperature and the rise of the crystallization rate of the composites. Furthermore, PEG (4 000) with the mass fraction of 10% can promote the crystallization rate of the composites. The mechanical properties show that the nano-particles strengthen and toughen the PET matrix, whereas PEG weakens these improve- ments.展开更多
The degradation of diethylene glycol terephthalate (DTP) and polyethylene terephthalate (PET) fiber by microbe was studied.The degree of DTP degradation was determined by High Performance Liquid Chromatography (HPLC) ...The degradation of diethylene glycol terephthalate (DTP) and polyethylene terephthalate (PET) fiber by microbe was studied.The degree of DTP degradation was determined by High Performance Liquid Chromatography (HPLC) to be more than 90%.The products after degradation of DTP and PET fiber were various.The degradation of DTP can be described by the first-order reaction model.The degradation of PET fiber was found to be little,but surface erosion of PET fiber could be clearly seen from the SEM photographs indicating there occurred some traces of biodegradation on the PET fiber surface.展开更多
基金Supported by the Program of Jiangsu Development & Reform Commission(2005)the Industrial-ization Boosting Program of College Scientific Reserach Achievements of the Education Department of Jiangsu Province(JHB06-03)~~
文摘Nano-ZnO particle (nZnOp) reinforced polyethylene glycol (PEG)/polyethylene terephthalate (PET) (nZnOp/PEG/PET) copolymeric composites with different mass fractions and molecular weights of PEG are synthesized via in-situ polymerization. The dispersion of nZnOp in copolymer matrixes and the effects of PEG and nZnOp particles on the crystallization behavior of the composites are studied by TEM, differential scanning calorimetry(DSC), XRD and Fourier thansform infrared spectroscopy (FTIR ). The results reveal that nZnOp particles are dispersed in the matrixes with nano-scale, and the addition of PEG induces more homogeneous dispersion of nZnOp. Simultaneously, these nanoparticles become nucleating centers during the crystallization of the matrixes. PEG segments can improve the flexibility of the PET molecular chain, resulting in the drop of the cold crystallization temperature and the rise of the crystallization rate of the composites. Furthermore, PEG (4 000) with the mass fraction of 10% can promote the crystallization rate of the composites. The mechanical properties show that the nano-particles strengthen and toughen the PET matrix, whereas PEG weakens these improve- ments.
基金The Sustentation Fund of Science Technology Development of High University of Tianjin City's (021106)
文摘The degradation of diethylene glycol terephthalate (DTP) and polyethylene terephthalate (PET) fiber by microbe was studied.The degree of DTP degradation was determined by High Performance Liquid Chromatography (HPLC) to be more than 90%.The products after degradation of DTP and PET fiber were various.The degradation of DTP can be described by the first-order reaction model.The degradation of PET fiber was found to be little,but surface erosion of PET fiber could be clearly seen from the SEM photographs indicating there occurred some traces of biodegradation on the PET fiber surface.