We report about current work which is aimed to improve the adhesion of melt processable elastomers onto relevant reinforcement materials by means of short wave UVC (ultraviolet C) light. Results of laboratory tests ...We report about current work which is aimed to improve the adhesion of melt processable elastomers onto relevant reinforcement materials by means of short wave UVC (ultraviolet C) light. Results of laboratory tests regarding UVC surface activation ofpolyamide fiber materials in air using low-pressure mercury lamps with 185 nm and 254 nm emissions are shown. The effect of irradiation on fiber strength was studied to find out suitable process parameters for providing the UVC treatment efficient but as gentle as possible to avoid negative effects on reinforcement properties. Application of a laboratory process for UVC pretreatment leads to significantly increased adhesion strength between the fibers and the melt processable elastomers on the base of TPA (polyamide) respectively TPU (polyurethane).展开更多
文摘We report about current work which is aimed to improve the adhesion of melt processable elastomers onto relevant reinforcement materials by means of short wave UVC (ultraviolet C) light. Results of laboratory tests regarding UVC surface activation ofpolyamide fiber materials in air using low-pressure mercury lamps with 185 nm and 254 nm emissions are shown. The effect of irradiation on fiber strength was studied to find out suitable process parameters for providing the UVC treatment efficient but as gentle as possible to avoid negative effects on reinforcement properties. Application of a laboratory process for UVC pretreatment leads to significantly increased adhesion strength between the fibers and the melt processable elastomers on the base of TPA (polyamide) respectively TPU (polyurethane).