期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
超高强度钢中二次硬化现象研究 被引量:49
1
作者 赵振业 《航空材料学报》 EI CAS CSCD 2002年第4期46-55,共10页
评述了超高强度钢中二次硬化现象的基本特征,M2C析出热力学、晶体学、动力学和机理等研究现状。研究证明,在位错上单独形核、共格沉淀的介稳定相M2C是一种可用的强化相。M2C比其他稳定碳化物具有更高形核驱动力和聚集抗力,Co提高这一驱... 评述了超高强度钢中二次硬化现象的基本特征,M2C析出热力学、晶体学、动力学和机理等研究现状。研究证明,在位错上单独形核、共格沉淀的介稳定相M2C是一种可用的强化相。M2C比其他稳定碳化物具有更高形核驱动力和聚集抗力,Co提高这一驱动力和形核率。Mo有效增加M2C点阵参数和聚集抗力。 展开更多
关键词 二次硬化现象 超高强度钢 聚集抗力 形核驱动 位错密度
下载PDF
Linear manifold clustering for high dimensional data based on line manifold searching and fusing 被引量:1
2
作者 黎刚果 王正志 +2 位作者 王晓敏 倪青山 强波 《Journal of Central South University》 SCIE EI CAS 2010年第5期1058-1069,共12页
High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this prob... High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data. 展开更多
关键词 linear manifold subspace clustering line manifold data mining data fusing clustering algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部