The antithrombotic and antiplatelet effects of two fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica were compared in order to examine the influence of chemical charact...The antithrombotic and antiplatelet effects of two fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica were compared in order to examine the influence of chemical character on their antithrombotic activity and the possible mechanism. Both LMW fucoidan fractions exhibited favorable antithrombotic activity in an Fecl3-induced arterial thrombosis. The antithrombotic activity of LMW fucoidan was related with decrease of TXB2 and whole blood viscosity and hematocrit. LMW fucoidan showed a correlation between anticoagulant, antiaggregant and antithrombotic effects in vivo. For LMW fucoidan, antithrombotic activity required high dose of 5-10 nmol kg-1, concomitantly with increase in anticoagulant activity and inhibition of platelet aggregation. Administration of LMW fucoidan significantly promoted the 6-keto-PGF1α content and decreased the TXB2 content, indicating its inhibition of tissue factor pathway and regulation of metabolism of arachidonic acid. By comparison, highly sulfated fucoidan LF2 with Mw 3900 seemed to be a more suitable choice for antithrombotic drug for its antithrombotic activity accompanied with specific inhibitory activity on platelet aggregation, low anticoagulant activity and low hemorrhagic risk in vivo.展开更多
Assembling of a few particles into a cluster commonly occurs in many systems.However,it is still challenging to precisely control particle assembling,due to the various amorphous structures induced by thermal fluctuat...Assembling of a few particles into a cluster commonly occurs in many systems.However,it is still challenging to precisely control particle assembling,due to the various amorphous structures induced by thermal fluctuations during cluster formation.Although these structures may have very different degrees of aggregation,a quantitative method is lacking to describe them,and how these structures evolve remains unclear.Therefore a significant step towards precise control of particle self-assembly is to describe and analyze various aggregation structures during cluster formation quantitatively.In this work,we are motivated to propose a method to directly count and quantitatively compare different aggregated structures.We also present several case studies to evaluate how the aggregated structures during cluster formation are affected by external controlling factors,e.g.,different interaction ranges,interaction strengths,or anisotropy of attraction.展开更多
Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggreg...Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline(0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. v WF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce v WF level in vascular endothelial injury rats and also significantly reduce v WF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and v WF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.展开更多
Modulation in the aggregation behavior of bio-surfactants (bile salts), sodium cholate (NaC) and sodium deoxycholate (NaDC) in aqueous solutions of carbohydrates (galactose and lactose) have been investigated ...Modulation in the aggregation behavior of bio-surfactants (bile salts), sodium cholate (NaC) and sodium deoxycholate (NaDC) in aqueous solutions of carbohydrates (galactose and lactose) have been investigated by measuring the density (ρ), speed of sound (u) and viscosity (η) of the mixtures at different temperatures 293.15, 298.15, 303.15, 308.15 and 313.15 K. The density and speed of sound data have been used to calculate various volumetric and compressibility parameters such as apparent molar volume (Vφ), isentropic compressibil- ity (κs), apparent molar adiabatic compression (κs,φ) to get a better insight into the micellization mechanism of bile salts. Further, the viscosity data have been studied in the light of relative viscosity (ηr) and viscous relaxation time (τ). Some derived parameters such as free volume (νf), internal pressure (πi) and molar cohesive energy (MCE) of NaC and NaDC in aqueous solution of saccharides have also been calculated from viscosity data in con- junction with density and speed of sound values. All the calculated and derived parameters provide qualitative information regarding the nature of interactions i.e. solute-solute, solute-solvent and solvent-solvent in the solution.展开更多
基金supported in part by the Notional Natural Science Foundation of China (No.30800858)the Shandong Natural Science Foundation (No.ZR2010 CQ020)
文摘The antithrombotic and antiplatelet effects of two fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica were compared in order to examine the influence of chemical character on their antithrombotic activity and the possible mechanism. Both LMW fucoidan fractions exhibited favorable antithrombotic activity in an Fecl3-induced arterial thrombosis. The antithrombotic activity of LMW fucoidan was related with decrease of TXB2 and whole blood viscosity and hematocrit. LMW fucoidan showed a correlation between anticoagulant, antiaggregant and antithrombotic effects in vivo. For LMW fucoidan, antithrombotic activity required high dose of 5-10 nmol kg-1, concomitantly with increase in anticoagulant activity and inhibition of platelet aggregation. Administration of LMW fucoidan significantly promoted the 6-keto-PGF1α content and decreased the TXB2 content, indicating its inhibition of tissue factor pathway and regulation of metabolism of arachidonic acid. By comparison, highly sulfated fucoidan LF2 with Mw 3900 seemed to be a more suitable choice for antithrombotic drug for its antithrombotic activity accompanied with specific inhibitory activity on platelet aggregation, low anticoagulant activity and low hemorrhagic risk in vivo.
文摘Assembling of a few particles into a cluster commonly occurs in many systems.However,it is still challenging to precisely control particle assembling,due to the various amorphous structures induced by thermal fluctuations during cluster formation.Although these structures may have very different degrees of aggregation,a quantitative method is lacking to describe them,and how these structures evolve remains unclear.Therefore a significant step towards precise control of particle self-assembly is to describe and analyze various aggregation structures during cluster formation quantitatively.In this work,we are motivated to propose a method to directly count and quantitatively compare different aggregated structures.We also present several case studies to evaluate how the aggregated structures during cluster formation are affected by external controlling factors,e.g.,different interaction ranges,interaction strengths,or anisotropy of attraction.
文摘Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline(0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. v WF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce v WF level in vascular endothelial injury rats and also significantly reduce v WF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and v WF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.
基金S.Chauhan and Maninder Kaur thank UGC,New Delhi for financial assistance under the project(F.No.42-249/2013/SR)award of Senior Research Fellowship(No.F.17-40/2008(SA-1)dated 31.07.2014)+1 种基金Himachal Pradesh University for Senior Research Fellowship(F.No.1-3/2013-HPU(DS)5111)Financial support from UGC-SAP(DRS-I)(No.F.540/3/DRS/2010(SAP-1))to Department of Chemistry,HPU
文摘Modulation in the aggregation behavior of bio-surfactants (bile salts), sodium cholate (NaC) and sodium deoxycholate (NaDC) in aqueous solutions of carbohydrates (galactose and lactose) have been investigated by measuring the density (ρ), speed of sound (u) and viscosity (η) of the mixtures at different temperatures 293.15, 298.15, 303.15, 308.15 and 313.15 K. The density and speed of sound data have been used to calculate various volumetric and compressibility parameters such as apparent molar volume (Vφ), isentropic compressibil- ity (κs), apparent molar adiabatic compression (κs,φ) to get a better insight into the micellization mechanism of bile salts. Further, the viscosity data have been studied in the light of relative viscosity (ηr) and viscous relaxation time (τ). Some derived parameters such as free volume (νf), internal pressure (πi) and molar cohesive energy (MCE) of NaC and NaDC in aqueous solution of saccharides have also been calculated from viscosity data in con- junction with density and speed of sound values. All the calculated and derived parameters provide qualitative information regarding the nature of interactions i.e. solute-solute, solute-solvent and solvent-solvent in the solution.