Total saponins of Panax notoginseng (PNS) have been shown to ameliorate renal interstitial fibrosis. Ginsenoside Rg 1, a panaxatriol saponin, is one of the major active molecules from PNS. The present study was unde...Total saponins of Panax notoginseng (PNS) have been shown to ameliorate renal interstitial fibrosis. Ginsenoside Rg 1, a panaxatriol saponin, is one of the major active molecules from PNS. The present study was undertaken to investigate the effect of ginsenoside Rgl on renal fibrosis in rats with unilateral ureteral obstruction (UUO). The rats were randomly divided into 3 groups: sham-operation (n=15), UUO (n=15) and UUO with ginsenoside Rgl treatment (n=15, 50 mg per kg body weight, intraperitoneally (i.p.) injected). The rats were sacrificed on Days 7 and 14 after the surgery. Histological examination demonstrated that ginsenoside Rgl significantly inhibited interstitial fibrosis including tubular injury as well as collagen deposition, u-smooth muscle actin (α-SMA) and E-cadherin are two markers of tubular epithelial-myofibroblast transition (TEMT). Interestingly, ginsenoside Rgl notably decreased α-SMA expression and simultaneously enhanced E-cadherin expression. The messenger RNA (mRNA) of transforming growth factor-β1 (TGF-β1), a key mediator to regulate TEMT, in the obstructed kidney increased dramatically, but was found to decrease significantly after administration of ginsenoside Rg 1. Further study showed that ginsenoside Rgl considerably decreased the levels of both active TGF-β1 and phosphorylated Smad2 (pSmad2). Moreover, ginsenoside Rgl substantially suppressed the expression of thrombospondin-1 (TSP-1), a cytokine which can promote the transcription of TGF-β1 mRNA and the activation of latent TGF-β1. These results suggest that ginsenoside Rgl inhibits renal interstitial fibrosis in rats with UUO. The mechanism might be partly related to the blocking of TEMT via suppressing the expression of TSP-1.展开更多
In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and se- crete fibrillar type I and III collagens. The purpose of the present study was to investi...In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and se- crete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (HzS) sup- presses TGF-~l-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were se- rum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL-1) for 24 h with or without sodium hydrosul- fide (NariS, 100 μmol L-1, 30 min pretreatment) treatment. NariS, an exogenous HzS donor, potently inhibited the prolifera- tion and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NariS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S sup- presses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.展开更多
Myofibroblasts,recognized classically by-smooth muscle actin(-SMA)expression,play a key role in the wound-healing process,promoting wound closure and matrix deposition.Although a body of evidence shows that keratinocy...Myofibroblasts,recognized classically by-smooth muscle actin(-SMA)expression,play a key role in the wound-healing process,promoting wound closure and matrix deposition.Although a body of evidence shows that keratinocytes explanted onto a wound bed promote closure of a skin injury,the underlying mechanisms are not well understood.The basal layer of epidermis is rich in undifferentiated keratinocytes(UKs).We showed that UKs injected into granulation tissue could switch into-SMA positive cells,and accelerate the rate of skin wound healing.In addition,when the epidermis sheets isolated from foreskin cover up the wound bed or are induced in vitro,keratinocytes located at the basal layers or adjacent sites were observed to convert into myofibroblast-like cells.Thus,UKs have a potential for myofibroblastic transition,which provides a novel mechanism by which keratinocyte explants accelerate skin wound healing.展开更多
基金Project (No. 30170437) supported by the National Natural Science Foundation of China
文摘Total saponins of Panax notoginseng (PNS) have been shown to ameliorate renal interstitial fibrosis. Ginsenoside Rg 1, a panaxatriol saponin, is one of the major active molecules from PNS. The present study was undertaken to investigate the effect of ginsenoside Rgl on renal fibrosis in rats with unilateral ureteral obstruction (UUO). The rats were randomly divided into 3 groups: sham-operation (n=15), UUO (n=15) and UUO with ginsenoside Rgl treatment (n=15, 50 mg per kg body weight, intraperitoneally (i.p.) injected). The rats were sacrificed on Days 7 and 14 after the surgery. Histological examination demonstrated that ginsenoside Rgl significantly inhibited interstitial fibrosis including tubular injury as well as collagen deposition, u-smooth muscle actin (α-SMA) and E-cadherin are two markers of tubular epithelial-myofibroblast transition (TEMT). Interestingly, ginsenoside Rgl notably decreased α-SMA expression and simultaneously enhanced E-cadherin expression. The messenger RNA (mRNA) of transforming growth factor-β1 (TGF-β1), a key mediator to regulate TEMT, in the obstructed kidney increased dramatically, but was found to decrease significantly after administration of ginsenoside Rg 1. Further study showed that ginsenoside Rgl considerably decreased the levels of both active TGF-β1 and phosphorylated Smad2 (pSmad2). Moreover, ginsenoside Rgl substantially suppressed the expression of thrombospondin-1 (TSP-1), a cytokine which can promote the transcription of TGF-β1 mRNA and the activation of latent TGF-β1. These results suggest that ginsenoside Rgl inhibits renal interstitial fibrosis in rats with UUO. The mechanism might be partly related to the blocking of TEMT via suppressing the expression of TSP-1.
基金supported by the State Key Program of National Natural Science of China(81230007)
文摘In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and se- crete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (HzS) sup- presses TGF-~l-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were se- rum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL-1) for 24 h with or without sodium hydrosul- fide (NariS, 100 μmol L-1, 30 min pretreatment) treatment. NariS, an exogenous HzS donor, potently inhibited the prolifera- tion and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NariS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S sup- presses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.
基金supported in part by the National Natural Science Foundation of China(3127082,81230061,81121004,81201479)National Basic Research Program of China(2012CB518103,2012CB518105)National High Technology Research and Development Program of Ministry of Science and Technology of China(2011AA020113,2012AA020502,2013AA020105)
文摘Myofibroblasts,recognized classically by-smooth muscle actin(-SMA)expression,play a key role in the wound-healing process,promoting wound closure and matrix deposition.Although a body of evidence shows that keratinocytes explanted onto a wound bed promote closure of a skin injury,the underlying mechanisms are not well understood.The basal layer of epidermis is rich in undifferentiated keratinocytes(UKs).We showed that UKs injected into granulation tissue could switch into-SMA positive cells,and accelerate the rate of skin wound healing.In addition,when the epidermis sheets isolated from foreskin cover up the wound bed or are induced in vitro,keratinocytes located at the basal layers or adjacent sites were observed to convert into myofibroblast-like cells.Thus,UKs have a potential for myofibroblastic transition,which provides a novel mechanism by which keratinocyte explants accelerate skin wound healing.