Objective: To establish the rat model with myocardial hypoxia/reoxygenation (H/R) injury, and investigate the protective effect of EPO pretreatment on the myocardium. Methods: Sixty male adult Wistar rats were randoml...Objective: To establish the rat model with myocardial hypoxia/reoxygenation (H/R) injury, and investigate the protective effect of EPO pretreatment on the myocardium. Methods: Sixty male adult Wistar rats were randomly divided into 3 groups: control group, H/R group, and EPO group, 20 in each group. The rats in EPO group accepted injection of 5 000 U/kg recombinant human erythropoietin (RHuEPO) through vein, and the other rats accepted the injection of the same volume of saline. Twenty-four hours after the injection, rats in the EPO and H/R groups were put into the hypoxia environment for 12 h and then returned to the normoxic environment for 2 h, and then the samples of blood and myocardium were collected. Serum myocardial enzyme activity, apoptosis, ultrastructure, myocardial MDA contents, EPO receptor (EPOR) expression in cardiac myocytes and cardiac functions were tested. Results: EPOR expression was positive in cardiac myocytes of adult rat according to the result of immunonistochemitry assaying. Compared to those in H/R group, rats in EPO group presented lighter injury of myocardial ultrastructure, the reduction of serum myocardial enzyme activity, inhibition of apoptosis, the better recovery of cardiac functions, and the less production of oxygen-derived free radicals. Conclusion: Adult rat cardiac myocytes could express EPOR, and EPO pretreatment produced protective effects on myocardium with H/R injury.展开更多
To observe the regulating effects of vascular endothelial growth factor (VEGF) and angiotensinⅡ (ANG II) on the frog’s pericardium, lymphatic stomata and angiogenesis so as to reveal their effects and mechanism on t...To observe the regulating effects of vascular endothelial growth factor (VEGF) and angiotensinⅡ (ANG II) on the frog’s pericardium, lymphatic stomata and angiogenesis so as to reveal their effects and mechanism on the mesothelial permeability, lymphatic stoma regulation and myocardial hypertrophy. Methods. VEGF and ANGⅡ were injected into the frog’s peritoneal cavity so as to examine the changes of the pericardial stromata by using transmission electron microscopy, scanning electron microscopy and computerized imaging analysis. Results. Scattered distributed pericardial stomata were found on the parietal pericardium of the frog with a few sinusoid mesothelial cells, whose blood supply was directly from the cardiac chambers flowing into the trabecular spaces of the myocardium (because there are no blood vessels in the myocardium of the frog). The average diameters of the pericardial stomata in VEGF and ANGⅡ groups were 1.50μ m and 1.79μ m respectively, which were much larger than those in the control group (0.72μ m, P Conclusions. VEGF and ANGⅡ could strongly regulate the pericardial stomata by increasing their numbers and openings with larger diameters and higher distribution density. They could also increase the sinusoid areas with the result of the higher permeability of the pericardium, which clearly indicated that VEGF and ANGⅡ could speed up the material transfer of the pericardial cavity and play an important role in preventing myocardial interstitial edema. Yet there was no strong evidence to show the angiogenesis in the myocardium.展开更多
Objective: To investigate the anti-inflammatory effect of erythropoietin (EPO) pretreatment on cardiomyocytes exposed to hypoxialreoxygenation injury (H/R) and explore the possible mechanism. Methods: The cultur...Objective: To investigate the anti-inflammatory effect of erythropoietin (EPO) pretreatment on cardiomyocytes exposed to hypoxialreoxygenation injury (H/R) and explore the possible mechanism. Methods: The cultured neonatal rats' ventricular cardiomyocytes were divided randomly into 4 groups, control group (C group), EPO pretreatment group (E group), EPO and pyrrolidine dithiocarbamate (PDTC) pretreatment group (EP group) and PDTC pretreatment group (P group). After 24 hours' pretreatment, the cardiomyocytes were exposed to H/R. After pretreatment and H/R, the expression of tumor necrosis factor- α (TNF- α ) gene in all the groups was detected by RT-PCR and Western blot. The nuclear factor- κ B (NF- κB) activity was detected by electrophoretic mobility shift assay (EMSA) and the inhibitor- κB α (Ⅰ- κB α) protein level was detected by Western blot. Results: The decrement of Ⅰ- κB a protein and the increasing NF- KB activity were found in cardiomyocytes pretreated with EPO before H/R compared to other groups (t=3.321, 4.183, P〈0.01). However, after H/R, NF- κB activity and expression of TNF- α gene were significantly reduced, Ⅰ- κB a protein expression was increased in cardiomyocytes of E group compared to other groups (t=-3.425, 3.687, 3.454, P〈0.01). All theses changes caused by EPO pretreatment were eliminated by the intervention of PDTC (an antagonist to NF- κB) during pretreatment. Conclusions: EPO pretreatment can inhibit the activation of NF- κB and upregulation of TNF- α gene in cardiomyocytes exposed to H/R through a negative feedback of NF- κB signaling pathway, and thus produces the anti-inflammatory effect. This might be one of the ways EPO produces the anti-inflammatory effect.展开更多
文摘Objective: To establish the rat model with myocardial hypoxia/reoxygenation (H/R) injury, and investigate the protective effect of EPO pretreatment on the myocardium. Methods: Sixty male adult Wistar rats were randomly divided into 3 groups: control group, H/R group, and EPO group, 20 in each group. The rats in EPO group accepted injection of 5 000 U/kg recombinant human erythropoietin (RHuEPO) through vein, and the other rats accepted the injection of the same volume of saline. Twenty-four hours after the injection, rats in the EPO and H/R groups were put into the hypoxia environment for 12 h and then returned to the normoxic environment for 2 h, and then the samples of blood and myocardium were collected. Serum myocardial enzyme activity, apoptosis, ultrastructure, myocardial MDA contents, EPO receptor (EPOR) expression in cardiac myocytes and cardiac functions were tested. Results: EPOR expression was positive in cardiac myocytes of adult rat according to the result of immunonistochemitry assaying. Compared to those in H/R group, rats in EPO group presented lighter injury of myocardial ultrastructure, the reduction of serum myocardial enzyme activity, inhibition of apoptosis, the better recovery of cardiac functions, and the less production of oxygen-derived free radicals. Conclusion: Adult rat cardiac myocytes could express EPOR, and EPO pretreatment produced protective effects on myocardium with H/R injury.
文摘To observe the regulating effects of vascular endothelial growth factor (VEGF) and angiotensinⅡ (ANG II) on the frog’s pericardium, lymphatic stomata and angiogenesis so as to reveal their effects and mechanism on the mesothelial permeability, lymphatic stoma regulation and myocardial hypertrophy. Methods. VEGF and ANGⅡ were injected into the frog’s peritoneal cavity so as to examine the changes of the pericardial stromata by using transmission electron microscopy, scanning electron microscopy and computerized imaging analysis. Results. Scattered distributed pericardial stomata were found on the parietal pericardium of the frog with a few sinusoid mesothelial cells, whose blood supply was directly from the cardiac chambers flowing into the trabecular spaces of the myocardium (because there are no blood vessels in the myocardium of the frog). The average diameters of the pericardial stomata in VEGF and ANGⅡ groups were 1.50μ m and 1.79μ m respectively, which were much larger than those in the control group (0.72μ m, P Conclusions. VEGF and ANGⅡ could strongly regulate the pericardial stomata by increasing their numbers and openings with larger diameters and higher distribution density. They could also increase the sinusoid areas with the result of the higher permeability of the pericardium, which clearly indicated that VEGF and ANGⅡ could speed up the material transfer of the pericardial cavity and play an important role in preventing myocardial interstitial edema. Yet there was no strong evidence to show the angiogenesis in the myocardium.
文摘Objective: To investigate the anti-inflammatory effect of erythropoietin (EPO) pretreatment on cardiomyocytes exposed to hypoxialreoxygenation injury (H/R) and explore the possible mechanism. Methods: The cultured neonatal rats' ventricular cardiomyocytes were divided randomly into 4 groups, control group (C group), EPO pretreatment group (E group), EPO and pyrrolidine dithiocarbamate (PDTC) pretreatment group (EP group) and PDTC pretreatment group (P group). After 24 hours' pretreatment, the cardiomyocytes were exposed to H/R. After pretreatment and H/R, the expression of tumor necrosis factor- α (TNF- α ) gene in all the groups was detected by RT-PCR and Western blot. The nuclear factor- κ B (NF- κB) activity was detected by electrophoretic mobility shift assay (EMSA) and the inhibitor- κB α (Ⅰ- κB α) protein level was detected by Western blot. Results: The decrement of Ⅰ- κB a protein and the increasing NF- KB activity were found in cardiomyocytes pretreated with EPO before H/R compared to other groups (t=3.321, 4.183, P〈0.01). However, after H/R, NF- κB activity and expression of TNF- α gene were significantly reduced, Ⅰ- κB a protein expression was increased in cardiomyocytes of E group compared to other groups (t=-3.425, 3.687, 3.454, P〈0.01). All theses changes caused by EPO pretreatment were eliminated by the intervention of PDTC (an antagonist to NF- κB) during pretreatment. Conclusions: EPO pretreatment can inhibit the activation of NF- κB and upregulation of TNF- α gene in cardiomyocytes exposed to H/R through a negative feedback of NF- κB signaling pathway, and thus produces the anti-inflammatory effect. This might be one of the ways EPO produces the anti-inflammatory effect.