Design and fabrication of Schottky barrier diodes (SBD) with a commercial standard 0 35μm CMOS process are described.In order to reduce the series resistor of Schottky contact,interdigitating the fingers of schottky...Design and fabrication of Schottky barrier diodes (SBD) with a commercial standard 0 35μm CMOS process are described.In order to reduce the series resistor of Schottky contact,interdigitating the fingers of schottky diode layout is adopted.The I-V,C-V ,and S parameter are measured.The parameters of realized SBD such as the saturation current,breakdown voltage,and the Schottky barrier height are given.The SPICE simulation model of the realized SBDs is given.展开更多
This paper describes the fabrication and electrical characteristics of Ti/4H-SiC Schottky barrier diodes (SBDs). The ideality factor n = 1.08 and effective Schottky barrier heightφ= 1.05eV of the SBDs were measured...This paper describes the fabrication and electrical characteristics of Ti/4H-SiC Schottky barrier diodes (SBDs). The ideality factor n = 1.08 and effective Schottky barrier heightφ= 1.05eV of the SBDs were measured with the method of forward current density-voltage (J-V). A low reverse leakage current below 5.96 ×10^-3A/cm^2 at a bias voltage of - 1. 1kV was obtained. By using B^+ implantation,an amorphous layer as the edge termination was formed. We used the PECVD SiO2 as the field plate dielectric. The SBDs have an on-state current density of 430A/cm^2 at a forward voltage drop of about 4V. The specific on-resistance Ro, was found to be 6. 77mΩ2 · cm^2 .展开更多
The fabrication and electrical characterization of Scho tt ky barrier diodes (SBD) on 6H-SiC,via thermal evaporation of Ni are reported.Th e Schottky barrier diodes are fabricated during the 6H-SiC epilayers grow n b...The fabrication and electrical characterization of Scho tt ky barrier diodes (SBD) on 6H-SiC,via thermal evaporation of Ni are reported.Th e Schottky barrier diodes are fabricated during the 6H-SiC epilayers grow n by using chemical vapor deposition on commercially available single-crystal 6 H-SiC wafers.The I-V characteristics of these diodes exhibit a sharp break down,with the breakdown voltage of 450V at room temperature.The diodes are demon strated to be of a low reverse leakage current of 5×10 -4 A·cm -2 at the bias voltage of -200V.The ideal factor and barrier height are 1 09 and 1 24-1 26eV,respectively.展开更多
A different approach,using the molecular beam epitaxy (MBE)-grown ZnS-based Schottky photodiode technology,is applied to fabricate an 8×8 photodiode array.The micro-processing procedures of this photodiode array ...A different approach,using the molecular beam epitaxy (MBE)-grown ZnS-based Schottky photodiode technology,is applied to fabricate an 8×8 photodiode array.The micro-processing procedures of this photodiode array including standard photolithography,a number of metallisation,wet-chemical etching and SiO_2 deposition for insulation are developed.The detector is characterized to have a cutoff wavelength at 340 nm and the photo-responsivity measurements on the pixels result an ultraviolet (UV) response as high as 0.15 A/W,corresponding to an external quantum efficiency of 55% in the visible-blind spectral ranging from 400 down to 250nm.Imaging tests indicate that this array is able to capture the intensity profile of a given UV light source with reasonably good capability.展开更多
A Y-band frequency doubler is analyzed and designed with GaAs planar Schottky diode, which is flip-chip solded into a 50 μm thick quartz substrate. Diode embedding impedance is found by full- wave analysis with lumpe...A Y-band frequency doubler is analyzed and designed with GaAs planar Schottky diode, which is flip-chip solded into a 50 μm thick quartz substrate. Diode embedding impedance is found by full- wave analysis with lumped port to model the nonlinear junction for impedance matching without the need of diode equivalent circuit model. All the matching circuit is designed "on-chip" and the mul- tiplier is self-biasing. To the doubler, a conversion efficiency of 6.1% and output power of 5.4mW are measured at 214GHz with input power of 88mW, and the typical measured efficiency is 4.5% in 200 - 225 GHz.展开更多
In the modern society,there is a strong demand for semiconductor chips,and the 4H polytype silicon carbide(4H-SiC)power device is a promising candidate for the next generation semiconductor chip,which can be used in v...In the modern society,there is a strong demand for semiconductor chips,and the 4H polytype silicon carbide(4H-SiC)power device is a promising candidate for the next generation semiconductor chip,which can be used in various power electronic systems.In order to improve the performance of the 4H-SiC power device,a novel ultrahigh-voltage(UHV)4H-SiC merged p-type/intrinsic/n-type(PiN)Schottky(MPS)diode with three-dimensional(3D)p-type buried layers(PBL)(3D-PBL MPS)is proposed and investigated by numerical simulation.The static forward conduction characteristics of the 3D-PBL MPS are similar to those of the conventional 4H-SiC MPS diode without the PBL(PBL-free MPS).However,when the 3D-PBL MPS is in the reverse blocking state,the 3D PBL can transfer the peak electric field(E_(peak))into a deeper position in the body of the epitaxial layer,and enhance the ability of the device to shield the high electric field at the Schottky contact interface(E_(S)),so that the reverse leakage current of the 3D-PBL MPS at 10 kV is only 0.002%of that of the PBL-free MPS.Meanwhile,the novel 3D-PBL MPS has overcome the disadvantage in the 4H-SiC MPS diode with the two-dimensional PBL(2D-PBL MPS),and the forward conduction characteristic of the 3D-PBL MPS will not get degenerated after the device converts from the reverse blocking state to the forward conduction state because of the special depletion layer variation mechanism depending on the 3D PBL.All the simulation results show that the novel UHV 3D-PBL MPS has excellent device performance.展开更多
We characterized a crystalline silicon based mini-module under varying ambient conditions, developed a PSPICE model for this panel, including temperature and irradiation dependence and applied this model to the simula...We characterized a crystalline silicon based mini-module under varying ambient conditions, developed a PSPICE model for this panel, including temperature and irradiation dependence and applied this model to the simulation of the impact of a blocking diode under different shadowing conditions. Different blocking diodes were examined, like germanium and silicon homojunction diodes and silicon Schottky diodes and compared to "intelligent" diodes, consisting of operational amplifiers with MOSFET switches. The simulations indicate a strongly reduced power loss in a panel integrating the new "intelligent" blocking diodes even when compared to silicon Schottky diodes, as the best performing traditional blocking diodes.展开更多
The electrical characteristics of graphene Schottky contacts formed on undoped GaN semiconductors were investigated. Excellent rectifying behavior with a rectification ratio of -10^7 at ±2 V and a low reverse lea...The electrical characteristics of graphene Schottky contacts formed on undoped GaN semiconductors were investigated. Excellent rectifying behavior with a rectification ratio of -10^7 at ±2 V and a low reverse leakage current of 1.0 × 10^-8 A/cm^2 at -5 V were observed. The Schottky barrier heights, as determined by the thermionic emission model Richardson plots, and barrier inhomogeneity model, were 0.90, 0.72, and 1.24 ± 0.13 eV, respectively. Despite the predicted low barrier height of -0.4 eV at the graphene-GaN interface, the formation of excellent rectifying characteristics with much larger barrier heights is attributed to the presence of a large number of surface states (1.2 x 1013 states/cm2/eV) and the internal spontaneous polarization field of GaN, resulted in a significant upward surface band bending or a bare surface barrier height as high as of 2.9 eV. Using the S parameter of 0.48 (measured from the work function dependence of Schottky barrier height) and the mean barrier height of 1.24 eV, the work function of graphene in the Au/graphene/GaN stack could be approximately estimated to be as low as 3.5 eV. The obtained results indicate that graphene is a promising candidate for use as a Schottky rectifier in GaN semiconductors with n-type conductivity.展开更多
We present an ultrasensitive ultraviolet (UV) detector based on a p-type ZnS nanoribbon (NR)/indium tin oxide (ITO) Schottky barrier diode (SBD). The device exhibits a pseudo-photovoltaic behavior which can al...We present an ultrasensitive ultraviolet (UV) detector based on a p-type ZnS nanoribbon (NR)/indium tin oxide (ITO) Schottky barrier diode (SBD). The device exhibits a pseudo-photovoltaic behavior which can allow the SBD to detect UV light irradiation with incident power of 6 × 10^-17 W (-85 photons/s on the NR) at room temperature, with excellent reproducibility and stability. The corresponding detectivity and photoconductive gain are calculated to be 3.1 × 10^20 cm.Hz1/2.W^-1 and 6.6 × 10^5, respectively. It is found that the presence of the trapping states at the p-ZnS NWITO interface plays a crucial role in determining the ultrahigh sensitivity of this nanoSBDs. Based on our theoretical calculation, even ultra-low photon fluxes on the order of several tens of photons could induce a significant change in interface potential and consequently cause a large photocurrent variation. The present study provides new opportunities for developiphigh-performance optoelectronic devices in the future.展开更多
Surface properties of SiC power devices mostly depend on the passivation layer(PL).This layer has direct influence on electrical characteristics of devices.2D numerical simulation of forward and reverse characteristic...Surface properties of SiC power devices mostly depend on the passivation layer(PL).This layer has direct influence on electrical characteristics of devices.2D numerical simulation of forward and reverse characteristics with and without different(PLs)(SiO2,HfO2 and Si3N4) has been performed.Simulation results show that the breakdown voltage increases with increasing PL thickness,and there is a lesser significant effect on forward characteristics.The maximum breakdown voltage with and without SiO2 PL is 1240 V and 276 V,respectively.SiO2 PL has compatibility with SiC surface providing high breakdown voltage,6 and 8% higher than that of HfO2 and Si3N4 respectively.Low leakage current is observed which then further decreases on reducing the thickness of PL.Furthermore,variation of forward current with dielectric constant and thickness of PLs was observed.Finally,it is suggested that matches of our results with published experimental results indicate that the Sentaurus TCAD simulator is a predictive tool for the SiC Schottky barrier diode simulation.展开更多
文摘Design and fabrication of Schottky barrier diodes (SBD) with a commercial standard 0 35μm CMOS process are described.In order to reduce the series resistor of Schottky contact,interdigitating the fingers of schottky diode layout is adopted.The I-V,C-V ,and S parameter are measured.The parameters of realized SBD such as the saturation current,breakdown voltage,and the Schottky barrier height are given.The SPICE simulation model of the realized SBDs is given.
文摘This paper describes the fabrication and electrical characteristics of Ti/4H-SiC Schottky barrier diodes (SBDs). The ideality factor n = 1.08 and effective Schottky barrier heightφ= 1.05eV of the SBDs were measured with the method of forward current density-voltage (J-V). A low reverse leakage current below 5.96 ×10^-3A/cm^2 at a bias voltage of - 1. 1kV was obtained. By using B^+ implantation,an amorphous layer as the edge termination was formed. We used the PECVD SiO2 as the field plate dielectric. The SBDs have an on-state current density of 430A/cm^2 at a forward voltage drop of about 4V. The specific on-resistance Ro, was found to be 6. 77mΩ2 · cm^2 .
文摘The fabrication and electrical characterization of Scho tt ky barrier diodes (SBD) on 6H-SiC,via thermal evaporation of Ni are reported.Th e Schottky barrier diodes are fabricated during the 6H-SiC epilayers grow n by using chemical vapor deposition on commercially available single-crystal 6 H-SiC wafers.The I-V characteristics of these diodes exhibit a sharp break down,with the breakdown voltage of 450V at room temperature.The diodes are demon strated to be of a low reverse leakage current of 5×10 -4 A·cm -2 at the bias voltage of -200V.The ideal factor and barrier height are 1 09 and 1 24-1 26eV,respectively.
文摘A different approach,using the molecular beam epitaxy (MBE)-grown ZnS-based Schottky photodiode technology,is applied to fabricate an 8×8 photodiode array.The micro-processing procedures of this photodiode array including standard photolithography,a number of metallisation,wet-chemical etching and SiO_2 deposition for insulation are developed.The detector is characterized to have a cutoff wavelength at 340 nm and the photo-responsivity measurements on the pixels result an ultraviolet (UV) response as high as 0.15 A/W,corresponding to an external quantum efficiency of 55% in the visible-blind spectral ranging from 400 down to 250nm.Imaging tests indicate that this array is able to capture the intensity profile of a given UV light source with reasonably good capability.
基金Supported by the 12th Five-year Defense Pre-research Fund of China(No.51308030509)
文摘A Y-band frequency doubler is analyzed and designed with GaAs planar Schottky diode, which is flip-chip solded into a 50 μm thick quartz substrate. Diode embedding impedance is found by full- wave analysis with lumped port to model the nonlinear junction for impedance matching without the need of diode equivalent circuit model. All the matching circuit is designed "on-chip" and the mul- tiplier is self-biasing. To the doubler, a conversion efficiency of 6.1% and output power of 5.4mW are measured at 214GHz with input power of 88mW, and the typical measured efficiency is 4.5% in 200 - 225 GHz.
基金Project(F2020210016) supported by the Natural Science Foundation of Hebei,ChinaProject(620004153) supported by the National Natural Science Foundation of China。
文摘In the modern society,there is a strong demand for semiconductor chips,and the 4H polytype silicon carbide(4H-SiC)power device is a promising candidate for the next generation semiconductor chip,which can be used in various power electronic systems.In order to improve the performance of the 4H-SiC power device,a novel ultrahigh-voltage(UHV)4H-SiC merged p-type/intrinsic/n-type(PiN)Schottky(MPS)diode with three-dimensional(3D)p-type buried layers(PBL)(3D-PBL MPS)is proposed and investigated by numerical simulation.The static forward conduction characteristics of the 3D-PBL MPS are similar to those of the conventional 4H-SiC MPS diode without the PBL(PBL-free MPS).However,when the 3D-PBL MPS is in the reverse blocking state,the 3D PBL can transfer the peak electric field(E_(peak))into a deeper position in the body of the epitaxial layer,and enhance the ability of the device to shield the high electric field at the Schottky contact interface(E_(S)),so that the reverse leakage current of the 3D-PBL MPS at 10 kV is only 0.002%of that of the PBL-free MPS.Meanwhile,the novel 3D-PBL MPS has overcome the disadvantage in the 4H-SiC MPS diode with the two-dimensional PBL(2D-PBL MPS),and the forward conduction characteristic of the 3D-PBL MPS will not get degenerated after the device converts from the reverse blocking state to the forward conduction state because of the special depletion layer variation mechanism depending on the 3D PBL.All the simulation results show that the novel UHV 3D-PBL MPS has excellent device performance.
文摘We characterized a crystalline silicon based mini-module under varying ambient conditions, developed a PSPICE model for this panel, including temperature and irradiation dependence and applied this model to the simulation of the impact of a blocking diode under different shadowing conditions. Different blocking diodes were examined, like germanium and silicon homojunction diodes and silicon Schottky diodes and compared to "intelligent" diodes, consisting of operational amplifiers with MOSFET switches. The simulations indicate a strongly reduced power loss in a panel integrating the new "intelligent" blocking diodes even when compared to silicon Schottky diodes, as the best performing traditional blocking diodes.
文摘The electrical characteristics of graphene Schottky contacts formed on undoped GaN semiconductors were investigated. Excellent rectifying behavior with a rectification ratio of -10^7 at ±2 V and a low reverse leakage current of 1.0 × 10^-8 A/cm^2 at -5 V were observed. The Schottky barrier heights, as determined by the thermionic emission model Richardson plots, and barrier inhomogeneity model, were 0.90, 0.72, and 1.24 ± 0.13 eV, respectively. Despite the predicted low barrier height of -0.4 eV at the graphene-GaN interface, the formation of excellent rectifying characteristics with much larger barrier heights is attributed to the presence of a large number of surface states (1.2 x 1013 states/cm2/eV) and the internal spontaneous polarization field of GaN, resulted in a significant upward surface band bending or a bare surface barrier height as high as of 2.9 eV. Using the S parameter of 0.48 (measured from the work function dependence of Schottky barrier height) and the mean barrier height of 1.24 eV, the work function of graphene in the Au/graphene/GaN stack could be approximately estimated to be as low as 3.5 eV. The obtained results indicate that graphene is a promising candidate for use as a Schottky rectifier in GaN semiconductors with n-type conductivity.
文摘We present an ultrasensitive ultraviolet (UV) detector based on a p-type ZnS nanoribbon (NR)/indium tin oxide (ITO) Schottky barrier diode (SBD). The device exhibits a pseudo-photovoltaic behavior which can allow the SBD to detect UV light irradiation with incident power of 6 × 10^-17 W (-85 photons/s on the NR) at room temperature, with excellent reproducibility and stability. The corresponding detectivity and photoconductive gain are calculated to be 3.1 × 10^20 cm.Hz1/2.W^-1 and 6.6 × 10^5, respectively. It is found that the presence of the trapping states at the p-ZnS NWITO interface plays a crucial role in determining the ultrahigh sensitivity of this nanoSBDs. Based on our theoretical calculation, even ultra-low photon fluxes on the order of several tens of photons could induce a significant change in interface potential and consequently cause a large photocurrent variation. The present study provides new opportunities for developiphigh-performance optoelectronic devices in the future.
基金the Higher Education Commission of Pakistan for providing financial support as indigenous scholarship Batch-IV
文摘Surface properties of SiC power devices mostly depend on the passivation layer(PL).This layer has direct influence on electrical characteristics of devices.2D numerical simulation of forward and reverse characteristics with and without different(PLs)(SiO2,HfO2 and Si3N4) has been performed.Simulation results show that the breakdown voltage increases with increasing PL thickness,and there is a lesser significant effect on forward characteristics.The maximum breakdown voltage with and without SiO2 PL is 1240 V and 276 V,respectively.SiO2 PL has compatibility with SiC surface providing high breakdown voltage,6 and 8% higher than that of HfO2 and Si3N4 respectively.Low leakage current is observed which then further decreases on reducing the thickness of PL.Furthermore,variation of forward current with dielectric constant and thickness of PLs was observed.Finally,it is suggested that matches of our results with published experimental results indicate that the Sentaurus TCAD simulator is a predictive tool for the SiC Schottky barrier diode simulation.