Polycrystalline and epitaxial CoSi 2 films are formed on the n-Si (111) substrates by solid state reaction of the as-deposited Co single-layer and Co/Ti bilayer with Si,respectively at different annealing phase.The C...Polycrystalline and epitaxial CoSi 2 films are formed on the n-Si (111) substrates by solid state reaction of the as-deposited Co single-layer and Co/Ti bilayer with Si,respectively at different annealing phase.The CoSi 2/Si Schottky contacts are measured with the current-voltage and capacitance-voltage (I-V/C-V) techniques within the range of temperature from 90K to room temperature.The measured I-V characteristics have been analyzed with a model based on the inhomogeneity in Schottky barrier height,i.e.,at high temperatures (≥~200K) or low temperatures but with a large bias,the I-V curves can be described by using the thermionic emission theory with a Gaussian distributed barrier height over the whole junction,while at low temperatures and with a small bias,the current is dominated by some small patches with low barrier height.It results in a plateau-like section in the low temperature I-V curves around 10 -7 A.At room temperature,the barrier height of polycrystalline CoSi 2/Si deduced from the I-V curve is about 0 57eV.For epitaxial CoSi 2,the barrier height depends on its final annealing temperature and increases from 0 54eV to 0 60eV with the annealing temperature increasing from 700℃ to 900℃.展开更多
Ultra thin epitaxial CoSi 2 films are fabricated by solid state reaction of a deposited bilayer of Co(3nm)/Ti (1nm) on n Si(100) substrates at different temperatures.The local barrier heights of the CoSi 2/Si cont...Ultra thin epitaxial CoSi 2 films are fabricated by solid state reaction of a deposited bilayer of Co(3nm)/Ti (1nm) on n Si(100) substrates at different temperatures.The local barrier heights of the CoSi 2/Si contacts are determined by using the ballistic electron emission microscopy (BEEM) and its spectroscopy (BEES) at low temperature.For CoSi 2/Si contact annealed at 800℃,the spatial distribution of barrier heights,which have mean barrier height of 599meV and a standard deviation of 21meV,obeys the Gaussian Function.However,for a sample that is annealed at 700℃,the barrier heights of it are more inhomogenous.Its local barrier heights range from 152meV to 870meV,which implies the large inhomogeneity of the CoSi 2 film.展开更多
In this paper, the author focuses on the ecourbarchitectonic physical structures created after year 2000, whose artistic-esthetic value has an iconological character. An entirely new approach in formation of the facad...In this paper, the author focuses on the ecourbarchitectonic physical structures created after year 2000, whose artistic-esthetic value has an iconological character. An entirely new approach in formation of the facade and roof planes as well as of the forms of structures whose appearance resemble sculptural creations has been analyzed. The buildings from all over the world, with different functions contents, indicate a tendency of a different understanding of interpretation of physical structures and correlation with natural and artifact environment. Water surfaces and vegetative material contribute to an effective, cultural, majestic impression of engineering-technological philosophy of city building. The examples in the paper suggest the obvious need of radical changing of the way of thinking in the application of the design strategy in conceptualization of urban agglomerations, and essentially important, conceptually inspired metabolic of relationships among the spatial structures. The world entered new non-globalization trends of creation of the city memory, of the new iconically, symbolically strong, non-cliché, non-standard forms which define the contemporary cultural-artistic and historical identity of macro-ambient entities. This is a good and encouraging sign.展开更多
Within the theoretical framework of English rhetoric, this paper analyzes the effect of imagery as a rhetorical device by Jane Austenin the novel Pride and Prejudice (2006). Instances are cited with the use of image...Within the theoretical framework of English rhetoric, this paper analyzes the effect of imagery as a rhetorical device by Jane Austenin the novel Pride and Prejudice (2006). Instances are cited with the use of imagery respectively in character portraits, dialogues, and scenes. It proves that an integrated use of this rhetorical device is an important means for vivid and impressive accounts in literary works, for it helps to build up the context for characterization, presenting the characters alive and distinctive, and effectively reveal the theme of the novel, bringing about authentic feelings to readers.展开更多
Developing low-cost and high-efficient noble-metal-free cocatalysts has been a challenge to achieve economic hydrogen production.In this work,molybdenum oxides(MoO3-x)were in situ loaded on polymer carbon nitride(PCN)...Developing low-cost and high-efficient noble-metal-free cocatalysts has been a challenge to achieve economic hydrogen production.In this work,molybdenum oxides(MoO3-x)were in situ loaded on polymer carbon nitride(PCN)via a simple one-pot impregnation-calcination approach.Different from post-impregnation method,intimate coupling interface between high-dispersed ultra-small MoO3-xnanocrystal and PCN was successfully formed during the in situ growth process.The MoO3-x-PCN-X(X=1,2,3,4)photocatalyst without noble platinum(Pt)finally exhibited enhanced photocatalytic hydrogen performance under visible light irradiation(λ>420 nm),with the highest hydrogen evolution rate of 15.6μmol/h,which was more than 3 times that of bulk PCN.Detailed structure-performance revealed that such improvement in visible-light hydrogen production activity originated from the intimate interfacial interaction between high-dispersed ultra-small MoO3-xnanocrystal and polymer carbon nitride as well as efficient charge carriers transfer brought by Schottky junction formed.展开更多
文摘Polycrystalline and epitaxial CoSi 2 films are formed on the n-Si (111) substrates by solid state reaction of the as-deposited Co single-layer and Co/Ti bilayer with Si,respectively at different annealing phase.The CoSi 2/Si Schottky contacts are measured with the current-voltage and capacitance-voltage (I-V/C-V) techniques within the range of temperature from 90K to room temperature.The measured I-V characteristics have been analyzed with a model based on the inhomogeneity in Schottky barrier height,i.e.,at high temperatures (≥~200K) or low temperatures but with a large bias,the I-V curves can be described by using the thermionic emission theory with a Gaussian distributed barrier height over the whole junction,while at low temperatures and with a small bias,the current is dominated by some small patches with low barrier height.It results in a plateau-like section in the low temperature I-V curves around 10 -7 A.At room temperature,the barrier height of polycrystalline CoSi 2/Si deduced from the I-V curve is about 0 57eV.For epitaxial CoSi 2,the barrier height depends on its final annealing temperature and increases from 0 54eV to 0 60eV with the annealing temperature increasing from 700℃ to 900℃.
文摘Ultra thin epitaxial CoSi 2 films are fabricated by solid state reaction of a deposited bilayer of Co(3nm)/Ti (1nm) on n Si(100) substrates at different temperatures.The local barrier heights of the CoSi 2/Si contacts are determined by using the ballistic electron emission microscopy (BEEM) and its spectroscopy (BEES) at low temperature.For CoSi 2/Si contact annealed at 800℃,the spatial distribution of barrier heights,which have mean barrier height of 599meV and a standard deviation of 21meV,obeys the Gaussian Function.However,for a sample that is annealed at 700℃,the barrier heights of it are more inhomogenous.Its local barrier heights range from 152meV to 870meV,which implies the large inhomogeneity of the CoSi 2 film.
文摘In this paper, the author focuses on the ecourbarchitectonic physical structures created after year 2000, whose artistic-esthetic value has an iconological character. An entirely new approach in formation of the facade and roof planes as well as of the forms of structures whose appearance resemble sculptural creations has been analyzed. The buildings from all over the world, with different functions contents, indicate a tendency of a different understanding of interpretation of physical structures and correlation with natural and artifact environment. Water surfaces and vegetative material contribute to an effective, cultural, majestic impression of engineering-technological philosophy of city building. The examples in the paper suggest the obvious need of radical changing of the way of thinking in the application of the design strategy in conceptualization of urban agglomerations, and essentially important, conceptually inspired metabolic of relationships among the spatial structures. The world entered new non-globalization trends of creation of the city memory, of the new iconically, symbolically strong, non-cliché, non-standard forms which define the contemporary cultural-artistic and historical identity of macro-ambient entities. This is a good and encouraging sign.
文摘Within the theoretical framework of English rhetoric, this paper analyzes the effect of imagery as a rhetorical device by Jane Austenin the novel Pride and Prejudice (2006). Instances are cited with the use of imagery respectively in character portraits, dialogues, and scenes. It proves that an integrated use of this rhetorical device is an important means for vivid and impressive accounts in literary works, for it helps to build up the context for characterization, presenting the characters alive and distinctive, and effectively reveal the theme of the novel, bringing about authentic feelings to readers.
基金the National Natural Science Foundation of China(No.21872093)the National Key Research and Development Program of China(No.2018YFB1502001)the Center of Hydrogen Science of Shanghai Jiao Tong University。
文摘Developing low-cost and high-efficient noble-metal-free cocatalysts has been a challenge to achieve economic hydrogen production.In this work,molybdenum oxides(MoO3-x)were in situ loaded on polymer carbon nitride(PCN)via a simple one-pot impregnation-calcination approach.Different from post-impregnation method,intimate coupling interface between high-dispersed ultra-small MoO3-xnanocrystal and PCN was successfully formed during the in situ growth process.The MoO3-x-PCN-X(X=1,2,3,4)photocatalyst without noble platinum(Pt)finally exhibited enhanced photocatalytic hydrogen performance under visible light irradiation(λ>420 nm),with the highest hydrogen evolution rate of 15.6μmol/h,which was more than 3 times that of bulk PCN.Detailed structure-performance revealed that such improvement in visible-light hydrogen production activity originated from the intimate interfacial interaction between high-dispersed ultra-small MoO3-xnanocrystal and polymer carbon nitride as well as efficient charge carriers transfer brought by Schottky junction formed.