因无人机机载激光雷达(Light detection and ranging,LiDAR)数据具有离散性,在生成数字高程模型(Digital elevation model,DEM)时需选择有效插值方法。以荒漠植被区为研究背景,使用零均值标准化方法归一化点云回波强度,利用肘方法确定...因无人机机载激光雷达(Light detection and ranging,LiDAR)数据具有离散性,在生成数字高程模型(Digital elevation model,DEM)时需选择有效插值方法。以荒漠植被区为研究背景,使用零均值标准化方法归一化点云回波强度,利用肘方法确定最佳聚类数目,采用K-means方法对点云强度值聚类得到地面点云。在此基础上,采用克里金(Kriging)方法插值抽稀率为20%和80%的地面点云数据,且将点云高程作为变量,建立RBF神经网络预测模型,并通过线性回归检验方法对模型进行精度分析,采用Delaunay三角网内插生成高精度DEM。结果表明:采用K-means方法实现最佳聚类数目为4的聚类,得到地面点云48722个,在点云较优抽稀率20%的情况下,径向基函数神经网络(Radical basis function neural network,RBFNN)训练时间为56s,点云高程预测的决定系数R2为0.887,均方根误差RMSE为0.168m。说明使用RBFNN对K-means聚类滤波得到的地面点云进行高程预测效果较好,可为基于点云构建高精度DEM提供参考。展开更多
文摘因无人机机载激光雷达(Light detection and ranging,LiDAR)数据具有离散性,在生成数字高程模型(Digital elevation model,DEM)时需选择有效插值方法。以荒漠植被区为研究背景,使用零均值标准化方法归一化点云回波强度,利用肘方法确定最佳聚类数目,采用K-means方法对点云强度值聚类得到地面点云。在此基础上,采用克里金(Kriging)方法插值抽稀率为20%和80%的地面点云数据,且将点云高程作为变量,建立RBF神经网络预测模型,并通过线性回归检验方法对模型进行精度分析,采用Delaunay三角网内插生成高精度DEM。结果表明:采用K-means方法实现最佳聚类数目为4的聚类,得到地面点云48722个,在点云较优抽稀率20%的情况下,径向基函数神经网络(Radical basis function neural network,RBFNN)训练时间为56s,点云高程预测的决定系数R2为0.887,均方根误差RMSE为0.168m。说明使用RBFNN对K-means聚类滤波得到的地面点云进行高程预测效果较好,可为基于点云构建高精度DEM提供参考。