Chemokines produced in the liver during hepatitis C virus(HCV) infection induce migration of activated T cells from the periphery to infected parenchyma.The milieu of chemokines secreted by infected hepatocytes is pre...Chemokines produced in the liver during hepatitis C virus(HCV) infection induce migration of activated T cells from the periphery to infected parenchyma.The milieu of chemokines secreted by infected hepatocytes is predominantly associated with the T-helper cell/Tc1 T cell(Th1/Tc1) response.These chemokines consist of CCL3(macrophage inflammatory protein-1α;MIP-1α),CCL4(MIP-1β),CCL5(regulated on activation normal T cell expressed and secreted;RANTES),CXCL10(interferon-γ-inducible protein-10;IP-10),CXCL11(interferon-inducible T-cell α chemoattractant;I-TAC),and CXCL9(monokine induced by interferon γ;Mig) and they recruit T cells expressing either CCR5 or CXCR3 chemokine receptors.Intrahepatic and peripheral blood levels of these chemokines are increased during chronic hepatitis C.The interaction between chemokines and their receptors is essential in recruiting HCV-specific T cells to control the infection.When the adaptive immune response fails in this task,non-specific T cells without the capacity to control the infection are also recruited to the liver,and these are ultimately responsible for the persistent hepatic damage.The modulation of chemokine receptor expression and chemokine secretion could be a viral escape mechanism to avoid specific T cell migration to the liver during the early phase of infection,and to maintain liver viability during the chronic phase,by impairing non-specific T cell migration.Some chemokines and their receptors correlate with liver damage,and CXCL10(IP-10) and CXCR3 levels have shown a clinical utility as predictors of treatment response outcome.The regulation of chemokines and their receptors could be a future potential therapeutic target to decrease liver inflammation and to increase specific T cell migration to the infected liver.展开更多
Chronic consumption of ethanol has a dramatic effect on the clinical outcome of patients with hepatitis C virus (HCV) infection, but the mechanism linking these two pathologies is unknown. Presently, in vitro systems ...Chronic consumption of ethanol has a dramatic effect on the clinical outcome of patients with hepatitis C virus (HCV) infection, but the mechanism linking these two pathologies is unknown. Presently, in vitro systems are limited in their ability to study the interaction between a productive wild-type HCV infection and chronic ethanol exposure. Mouse models are potentially very useful in dissecting elements of the HCV-ethanol relationship. Experiments in mice that transgenically express HCV proteins are outlined, as are experiments for the generation of mice with chimeric human livers. The latter models appear to have the most promise for accurately modeling the effects of chronic ethanol intake in HCV-infected human livers.展开更多
基金Supported by Grants from "Fiscam" J.C.C.M (Ayuda paraproyectos de investigación en saludPI-2007/32)+7 种基金"AsociaciónCastellana de Aparato Digestivo" (Beca ACADACAD/06)"Fundación de Investigación Médica Mutua Madrilea"(Beca Ayudas a la Investigación FMMM2548/2008),Spainsupported by a research grantfrom "Fiscam" J.C.C.M ("Perfeccionamiento y movilidad deinvestigadores" MOV-2007_JI/18), Spainsupported by a research grant from "Instituto de SaludCarlos Ⅲ" (Contrato de apoyo a la investigación en el SNS"CA07/00157),Spain
文摘Chemokines produced in the liver during hepatitis C virus(HCV) infection induce migration of activated T cells from the periphery to infected parenchyma.The milieu of chemokines secreted by infected hepatocytes is predominantly associated with the T-helper cell/Tc1 T cell(Th1/Tc1) response.These chemokines consist of CCL3(macrophage inflammatory protein-1α;MIP-1α),CCL4(MIP-1β),CCL5(regulated on activation normal T cell expressed and secreted;RANTES),CXCL10(interferon-γ-inducible protein-10;IP-10),CXCL11(interferon-inducible T-cell α chemoattractant;I-TAC),and CXCL9(monokine induced by interferon γ;Mig) and they recruit T cells expressing either CCR5 or CXCR3 chemokine receptors.Intrahepatic and peripheral blood levels of these chemokines are increased during chronic hepatitis C.The interaction between chemokines and their receptors is essential in recruiting HCV-specific T cells to control the infection.When the adaptive immune response fails in this task,non-specific T cells without the capacity to control the infection are also recruited to the liver,and these are ultimately responsible for the persistent hepatic damage.The modulation of chemokine receptor expression and chemokine secretion could be a viral escape mechanism to avoid specific T cell migration to the liver during the early phase of infection,and to maintain liver viability during the chronic phase,by impairing non-specific T cell migration.Some chemokines and their receptors correlate with liver damage,and CXCL10(IP-10) and CXCR3 levels have shown a clinical utility as predictors of treatment response outcome.The regulation of chemokines and their receptors could be a future potential therapeutic target to decrease liver inflammation and to increase specific T cell migration to the infected liver.
文摘Chronic consumption of ethanol has a dramatic effect on the clinical outcome of patients with hepatitis C virus (HCV) infection, but the mechanism linking these two pathologies is unknown. Presently, in vitro systems are limited in their ability to study the interaction between a productive wild-type HCV infection and chronic ethanol exposure. Mouse models are potentially very useful in dissecting elements of the HCV-ethanol relationship. Experiments in mice that transgenically express HCV proteins are outlined, as are experiments for the generation of mice with chimeric human livers. The latter models appear to have the most promise for accurately modeling the effects of chronic ethanol intake in HCV-infected human livers.