AIM: The transcription factor EGR-1 (early growth response gene-1) plays an important role in cell growth, differentiation and development. It has identified that EGR-1 has significant transformation suppression activ...AIM: The transcription factor EGR-1 (early growth response gene-1) plays an important role in cell growth, differentiation and development. It has identified that EGR-1 has significant transformation suppression activity in some neoplasms, such as fibrosarcoma, breast carcinoma. This experiment was designed to investigate the role of egr-1 in the cancerous process of hepatocellular carcinoma (HCC) and esophageal carcinoma (EC), and then to appraise the effects of EGR-1 on the growth of these tumor cells. METHODS: Firstly, the transcription and expression of egr-1 in HCC and EC, paracancerous tissues and their normal counterpart parts were detected by in situ hybridization and immunohistochemistry, with normal human breast and mouse brain tissues as positive controls. Egr-1 gene was then transfected into HCC (HHCC, SMMC7721) and EC (ECa109) cell lines in which no egr-1 transcription and expression were present. The cell growth speed, FCM cell cycle, plate clone formation and tumorigenicity in nude mice were observed and the controls were the cell lines transfected with vector only. RESULTS: Little or no egr-1 transcription and expression were detected in HCC, EC and normal liver tissues. The expression of egr-1 were found higher in hepatocellular paracancerous tissue (transcription level P=0.000; expression level P=0.143, probably because fewer in number of cases) and dysplastic tissue of esophageal cancer (transcription level P=0.000; expression level P=0.001). The growth rate of egr-1-transfected HHCC (HCC cell line) cells and ECa109 (EC cell line) cells was much slower than that of the controls. The proportion of S phase cell, clone formation and tumorigenicity were significantly lower than these of the controls' (decreased 45.5% in HHCC cells and 34.1% in ECa109 cells; 46.6% and 41.8%; 80.4% and 72.6% respectively). There were no obvious differences between SMMC7721 (HCC) egr-1-transfected cells and the controls with regard to the above items. CONCLUSION: The decreased expression of egr-1 might play a role in the dysregulation of normal growth in the cancerous process of HCC and EC. Egr-1 gene of transfected HHCC and ECa109 cells showed obvious suppression of the cell growth and malignant phenotypes, but no suppression in SMMC7721 (HCC cell line) cells.展开更多
Objective To explore the role and regulation of guanine nucleotide-binding protein G(i), a-1 subunit (GNAI1) in hepatocellular carcinoma (HCC). Methods Expression of GNAI1 in HCC samples was determined by qRT-PC...Objective To explore the role and regulation of guanine nucleotide-binding protein G(i), a-1 subunit (GNAI1) in hepatocellular carcinoma (HCC). Methods Expression of GNAI1 in HCC samples was determined by qRT-PCR and immunohistochemical (IHC) staining. Huh-7 and SNU-387 cells stably expressing GNAI1 were established by the infection of lentivirus transducing unit containing GNAI1. siRNA against GNAI1 was transfected into SMMC-7721 cells to knock down the GNAI1 expression in HCC cells. Mir-320a/c/d mimics were transfected into SMMC-7721 and SK-Hep-1 cells and the expression of GNAll was determined by Western blot. The migration and invasion of Huh-7, SNU-387, SK-Hep-1 and SMMC-7721 cells were investigated by Transwell assays. Results The GNAI1 protein was significantly downregulated in HCC samples without changes in its mRNA levels. GNAI1 could inhibit the migration and invasion of HCC cells in vitro. Further investigations indicated that GNAI1 was a target of miR-320a/c/d in HCC cells. Transwell assays demonstrated that these microRNAs could promote the migratory ability and invasivesess of HCC cells in vitro. Conclusions GNAII is downregulated in HCC and inhibits the migration and invasion of HCC cells. This study is the first to investigate the role of GNAI1 in cancer. Regulation of GNAI1 by miR-320a/c/d indicates new therapeutic avenues for targeting HCC metastasis.展开更多
基金the National Natural Scientific Foundation of China,No.39670298
文摘AIM: The transcription factor EGR-1 (early growth response gene-1) plays an important role in cell growth, differentiation and development. It has identified that EGR-1 has significant transformation suppression activity in some neoplasms, such as fibrosarcoma, breast carcinoma. This experiment was designed to investigate the role of egr-1 in the cancerous process of hepatocellular carcinoma (HCC) and esophageal carcinoma (EC), and then to appraise the effects of EGR-1 on the growth of these tumor cells. METHODS: Firstly, the transcription and expression of egr-1 in HCC and EC, paracancerous tissues and their normal counterpart parts were detected by in situ hybridization and immunohistochemistry, with normal human breast and mouse brain tissues as positive controls. Egr-1 gene was then transfected into HCC (HHCC, SMMC7721) and EC (ECa109) cell lines in which no egr-1 transcription and expression were present. The cell growth speed, FCM cell cycle, plate clone formation and tumorigenicity in nude mice were observed and the controls were the cell lines transfected with vector only. RESULTS: Little or no egr-1 transcription and expression were detected in HCC, EC and normal liver tissues. The expression of egr-1 were found higher in hepatocellular paracancerous tissue (transcription level P=0.000; expression level P=0.143, probably because fewer in number of cases) and dysplastic tissue of esophageal cancer (transcription level P=0.000; expression level P=0.001). The growth rate of egr-1-transfected HHCC (HCC cell line) cells and ECa109 (EC cell line) cells was much slower than that of the controls. The proportion of S phase cell, clone formation and tumorigenicity were significantly lower than these of the controls' (decreased 45.5% in HHCC cells and 34.1% in ECa109 cells; 46.6% and 41.8%; 80.4% and 72.6% respectively). There were no obvious differences between SMMC7721 (HCC) egr-1-transfected cells and the controls with regard to the above items. CONCLUSION: The decreased expression of egr-1 might play a role in the dysregulation of normal growth in the cancerous process of HCC and EC. Egr-1 gene of transfected HHCC and ECa109 cells showed obvious suppression of the cell growth and malignant phenotypes, but no suppression in SMMC7721 (HCC cell line) cells.
基金supported by grants from the National 973 Key Basic Research Program(No.2011CB933100)National Natural Science Foundation of China(No.81125016 and 81101481)+1 种基金Science and Technology Commission of Shanghai Municipality(No.11XD1404500 and 10JC1414200)Shanghai Health Bureau(No.XYQ2011047 and XBR2011039)
文摘Objective To explore the role and regulation of guanine nucleotide-binding protein G(i), a-1 subunit (GNAI1) in hepatocellular carcinoma (HCC). Methods Expression of GNAI1 in HCC samples was determined by qRT-PCR and immunohistochemical (IHC) staining. Huh-7 and SNU-387 cells stably expressing GNAI1 were established by the infection of lentivirus transducing unit containing GNAI1. siRNA against GNAI1 was transfected into SMMC-7721 cells to knock down the GNAI1 expression in HCC cells. Mir-320a/c/d mimics were transfected into SMMC-7721 and SK-Hep-1 cells and the expression of GNAll was determined by Western blot. The migration and invasion of Huh-7, SNU-387, SK-Hep-1 and SMMC-7721 cells were investigated by Transwell assays. Results The GNAI1 protein was significantly downregulated in HCC samples without changes in its mRNA levels. GNAI1 could inhibit the migration and invasion of HCC cells in vitro. Further investigations indicated that GNAI1 was a target of miR-320a/c/d in HCC cells. Transwell assays demonstrated that these microRNAs could promote the migratory ability and invasivesess of HCC cells in vitro. Conclusions GNAII is downregulated in HCC and inhibits the migration and invasion of HCC cells. This study is the first to investigate the role of GNAI1 in cancer. Regulation of GNAI1 by miR-320a/c/d indicates new therapeutic avenues for targeting HCC metastasis.