The paper provides a basic review of intestinal microflora and its importance in liver diseases. The intestinal microflora has many important functions, above all to maintain the microbial barrier against established ...The paper provides a basic review of intestinal microflora and its importance in liver diseases. The intestinal microflora has many important functions, above all to maintain the microbial barrier against established as well as potential pathogens. Furthermore, it influences the motility and perfusion of the intestinal wall, stimu- lates the intestinal immune system and therefore also the so-called common mucosal immune system, reducing bacterial translocation and producing vitamins. Immune homeostasis at mucosal level results from a controlled response to intestinal luminal antigens. In liver cirrhosis, there are many changes in its function, mostly an increase in bacterial overgrowth and translocation. In this review, probiotics and their indications in hepatology are generally discussed. According to recent knowledge, these preparations are indicated in clinical practice only for cases of hepatic encephalopathy. Probiotics are able to decrease the permeability of the intestinal wall, and decrease bacterial translocation and endotoxemia in animal models as well as in clinical studies, which is extremely important in the prevention of complications of liver cirrhosis and infection after liver transplantation. Probiotics could limit oxidative and inflammatory liver damage and, in some situations, improve the histological state, and thus non-alcoholic steatohepatitis could be considered as another possible indication.展开更多
Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy...Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy individuals the intestinal microbiota have a symbiotic relationship with the host organism and possess important and unique functions, including a metabolic function (i.e. digestion of dietary compounds and xenobiotics, fermentation of undigestible carbohydrates with production of short chain fatty acids), a mucosal barrier function (i.e. by inhibiting pathogen invasion and strengthening epithelial barrier integrity), and an immune modula- tory function (i.e. mucosal immune system priming and maintenance of intestinal epithelium homeostasis). A fine balance regulates the mechanism that allows co- existence of mammals with their commensal bacteria. In IBD this mechanism of immune tolerance is impaired because of several potential causative factors. The gut microbiota composition and activity of IBD patients are abnormal, with a decreased prevalence of dominant members of the human commensal microbiota (i.e. Clostridium IXa and IV groups, Bacteroides, bifldobacteria) and a concomitant increase in detrimental bacteria (i.e. sulphate-reducing bacteria, Escherichia coll. The observed dysbiosis is concomitant with defectiveinnate immunity and bacterial killing (i.e. reduced mucosal defensins and IgA, malfunctioning phagocytosis) and overaggressive adaptive immune response (due to ineffective regulatory T cells and antigen presenting cells), which are considered the basis of IBD pathogen- esis. However, we still do not know how the interplay between these parameters causes the disease. Studies looking at gut microbial composition, epithelial integrity and mucosal immune markers in genotyped IBD populations are therefore warranted to shed light on this obscure pathogenesis.展开更多
Objective This study aimed to develop a type of Ganoderma lucidum(G.lucidum)-probiotic fermentation broth that can effectively improve the intestinal mucosal barrier function of mice with ceftriaxone-induced intestina...Objective This study aimed to develop a type of Ganoderma lucidum(G.lucidum)-probiotic fermentation broth that can effectively improve the intestinal mucosal barrier function of mice with ceftriaxone-induced intestinal dysbiosis.Methods By means of absorbance of optical density(OD)value and phenol-concentrated sulfuric acid measurement of polysaccharide content,the probiotic species can grow on the medium of G.lucidum were screened out,and the concentration of the medium of G.lucidum was determined,and the fermentation broth was prepared for subsequent experiments.Thirty-two SPF grade male BALB/c mice were randomly divided into four groups(eight mice in each group),namely control group(CON),intestinal mucosal barrier damage model group(CS),fermentation broth intervention group(FT)and G.lucidum medium intervention group(GL),respectively.The intestinal dysregulation model was induced by intra-gastric administration of 0.2 mL ceftriaxone sodium(twice a day for seven consecutive days).From day 8,the FT group and GL group were gavage with 0.2 mL fermentation broth and G.lucidum medium,respectively.On day 15,all mice were sacrificed.To draw the weight curve and measure the cecal index;pathological examination of colon tissues with HE staining;serum levels of LPS,IL-10,TNF and IL-6 were detected by ELISA.Flow cytometry was used to analyze the changes of CD3+T cells,CD4+T cells,CD8+T cells and macrophages in spleen.16S rRNA sequencing was performed to detect the intestinal microbiota structure of mice.Results Bacillus subtilis can decompose and utilize G.lucidum fruiting body medium,and the suitable concentration of G.lucidum fruiting body medium is 33.2 mg/mL.The effect of Bacillus subtilis-G.lucidum fermentation broth on the damage of intestinal mucosal barrier caused by ceftriaxone sodium was reduced,the body weight of mice recovered and colon swelling improved,colon histopathological injury was alleviated,inflammatory cell infiltration was alleviated,serum IL-10 increased significantly,LPS、TNF-αand IL-6 decreased significantly compared with model group,and the proportion of T cells and intestinal dysbiosis was improved.Conclusions The experimental results suggest that Bacillus subtilis-G.lucidum fermentation broth can effectively improve the intestinal barrier function damage,immune dysfunction and intestinal dysbiosis caused by antibiotic overdose,and has a certain regulatory effect on intestinal mucosal barrier function.展开更多
Inflammasomes and their product interleukin 18(IL-18)play important roles in gut microbiota monitoring and homeostasis,and their loss of function could lead to microbiota dysbiosis and accelerate disease progression.H...Inflammasomes and their product interleukin 18(IL-18)play important roles in gut microbiota monitoring and homeostasis,and their loss of function could lead to microbiota dysbiosis and accelerate disease progression.However,the impacts of the resulting microbiota dysbiosis on the mucosal immune system are largely unknown.Here,we show that dysbiotic microbiota from Il18^(-/-)mice induced immune cell loss in the small intestine(SI)in an inflammasome-independent manner.Cohousing experiments revealed that the immunotoxic phenotype of these microbiota was transferable to wild type(WT)mice and induced immune cell death through the receptor-interacting protein kinase 3(RIP3)-mixed lineage kinase domain like pseudokinase(MLKL)pathway.Analysis of microbiota composition identified two types of bacteria at the genus level,Ureaplasma and Parasutterella,that accumulated in Il18^(-/-)mice and negatively mediated changes in immune cells in the SI.Furthermore,dysbiosis in Il18^(-/-)mice also contributed to increased susceptibility to Listeria infection.Collectively,our results demonstrate that IL-18 is essential to microbiota homeostasis and that dysbiotic microbiota could significantly shape the landscape of the immune system.展开更多
文摘The paper provides a basic review of intestinal microflora and its importance in liver diseases. The intestinal microflora has many important functions, above all to maintain the microbial barrier against established as well as potential pathogens. Furthermore, it influences the motility and perfusion of the intestinal wall, stimu- lates the intestinal immune system and therefore also the so-called common mucosal immune system, reducing bacterial translocation and producing vitamins. Immune homeostasis at mucosal level results from a controlled response to intestinal luminal antigens. In liver cirrhosis, there are many changes in its function, mostly an increase in bacterial overgrowth and translocation. In this review, probiotics and their indications in hepatology are generally discussed. According to recent knowledge, these preparations are indicated in clinical practice only for cases of hepatic encephalopathy. Probiotics are able to decrease the permeability of the intestinal wall, and decrease bacterial translocation and endotoxemia in animal models as well as in clinical studies, which is extremely important in the prevention of complications of liver cirrhosis and infection after liver transplantation. Probiotics could limit oxidative and inflammatory liver damage and, in some situations, improve the histological state, and thus non-alcoholic steatohepatitis could be considered as another possible indication.
文摘Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy individuals the intestinal microbiota have a symbiotic relationship with the host organism and possess important and unique functions, including a metabolic function (i.e. digestion of dietary compounds and xenobiotics, fermentation of undigestible carbohydrates with production of short chain fatty acids), a mucosal barrier function (i.e. by inhibiting pathogen invasion and strengthening epithelial barrier integrity), and an immune modula- tory function (i.e. mucosal immune system priming and maintenance of intestinal epithelium homeostasis). A fine balance regulates the mechanism that allows co- existence of mammals with their commensal bacteria. In IBD this mechanism of immune tolerance is impaired because of several potential causative factors. The gut microbiota composition and activity of IBD patients are abnormal, with a decreased prevalence of dominant members of the human commensal microbiota (i.e. Clostridium IXa and IV groups, Bacteroides, bifldobacteria) and a concomitant increase in detrimental bacteria (i.e. sulphate-reducing bacteria, Escherichia coll. The observed dysbiosis is concomitant with defectiveinnate immunity and bacterial killing (i.e. reduced mucosal defensins and IgA, malfunctioning phagocytosis) and overaggressive adaptive immune response (due to ineffective regulatory T cells and antigen presenting cells), which are considered the basis of IBD pathogen- esis. However, we still do not know how the interplay between these parameters causes the disease. Studies looking at gut microbial composition, epithelial integrity and mucosal immune markers in genotyped IBD populations are therefore warranted to shed light on this obscure pathogenesis.
基金We thank for the funding support from the National Natural Science Foundation of China(No.31900920)the Nutrition and Care of Maternal&Child Research Fund Project of Guangzhou Biostime Institute of Nutrition&Care(No.2019BINCMCF02)the Liaoning Provincial Program for Top Discipline of Basic Medical Sciences,China.
文摘Objective This study aimed to develop a type of Ganoderma lucidum(G.lucidum)-probiotic fermentation broth that can effectively improve the intestinal mucosal barrier function of mice with ceftriaxone-induced intestinal dysbiosis.Methods By means of absorbance of optical density(OD)value and phenol-concentrated sulfuric acid measurement of polysaccharide content,the probiotic species can grow on the medium of G.lucidum were screened out,and the concentration of the medium of G.lucidum was determined,and the fermentation broth was prepared for subsequent experiments.Thirty-two SPF grade male BALB/c mice were randomly divided into four groups(eight mice in each group),namely control group(CON),intestinal mucosal barrier damage model group(CS),fermentation broth intervention group(FT)and G.lucidum medium intervention group(GL),respectively.The intestinal dysregulation model was induced by intra-gastric administration of 0.2 mL ceftriaxone sodium(twice a day for seven consecutive days).From day 8,the FT group and GL group were gavage with 0.2 mL fermentation broth and G.lucidum medium,respectively.On day 15,all mice were sacrificed.To draw the weight curve and measure the cecal index;pathological examination of colon tissues with HE staining;serum levels of LPS,IL-10,TNF and IL-6 were detected by ELISA.Flow cytometry was used to analyze the changes of CD3+T cells,CD4+T cells,CD8+T cells and macrophages in spleen.16S rRNA sequencing was performed to detect the intestinal microbiota structure of mice.Results Bacillus subtilis can decompose and utilize G.lucidum fruiting body medium,and the suitable concentration of G.lucidum fruiting body medium is 33.2 mg/mL.The effect of Bacillus subtilis-G.lucidum fermentation broth on the damage of intestinal mucosal barrier caused by ceftriaxone sodium was reduced,the body weight of mice recovered and colon swelling improved,colon histopathological injury was alleviated,inflammatory cell infiltration was alleviated,serum IL-10 increased significantly,LPS、TNF-αand IL-6 decreased significantly compared with model group,and the proportion of T cells and intestinal dysbiosis was improved.Conclusions The experimental results suggest that Bacillus subtilis-G.lucidum fermentation broth can effectively improve the intestinal barrier function damage,immune dysfunction and intestinal dysbiosis caused by antibiotic overdose,and has a certain regulatory effect on intestinal mucosal barrier function.
基金supported by the National Key Research and Development Program of China(2020YFA0509101)the National Natural Science Foundation of China(91742202,81722022,and 81821001)the Young Talent Support Program and Fundamental Research Funds for the Central Universities and the University Synergy Innovation Program of Anhui Province(GXXT-2019-026)。
文摘Inflammasomes and their product interleukin 18(IL-18)play important roles in gut microbiota monitoring and homeostasis,and their loss of function could lead to microbiota dysbiosis and accelerate disease progression.However,the impacts of the resulting microbiota dysbiosis on the mucosal immune system are largely unknown.Here,we show that dysbiotic microbiota from Il18^(-/-)mice induced immune cell loss in the small intestine(SI)in an inflammasome-independent manner.Cohousing experiments revealed that the immunotoxic phenotype of these microbiota was transferable to wild type(WT)mice and induced immune cell death through the receptor-interacting protein kinase 3(RIP3)-mixed lineage kinase domain like pseudokinase(MLKL)pathway.Analysis of microbiota composition identified two types of bacteria at the genus level,Ureaplasma and Parasutterella,that accumulated in Il18^(-/-)mice and negatively mediated changes in immune cells in the SI.Furthermore,dysbiosis in Il18^(-/-)mice also contributed to increased susceptibility to Listeria infection.Collectively,our results demonstrate that IL-18 is essential to microbiota homeostasis and that dysbiotic microbiota could significantly shape the landscape of the immune system.