期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进主动形状模型的含胸壁粘连型肿块的肺区分割方法研究 被引量:3
1
作者 孙申申 范立南 +2 位作者 康雁 任会之 齐守良 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2016年第5期879-884,共6页
肺区分割是计算机辅助诊断肺癌的前提。当肿块与胸壁粘连时,由于两者的计算机断层成像(CT)值接近,基于局部低级特征的传统分割方法不能得到正确结果;而且由于肿块体积大,造成了肺区内正常组织的大面积缺失,故以往含胸壁粘连型肺结节(直... 肺区分割是计算机辅助诊断肺癌的前提。当肿块与胸壁粘连时,由于两者的计算机断层成像(CT)值接近,基于局部低级特征的传统分割方法不能得到正确结果;而且由于肿块体积大,造成了肺区内正常组织的大面积缺失,故以往含胸壁粘连型肺结节(直径小于3cm)的肺区分割方法不再适用,需要采用能结合先验形状和低级特征的主动形状模型(ASM)来分割含胸壁粘连型肺肿块的肺区。但传统ASM的搜索步骤是一种基于最小二乘的优化方法,该方法对异常标记点敏感,会使轮廓更新到正常肺组织和肿块的过渡区域而不是真正的肺边缘。针对这一问题,提出了改进的ASM算法:首先基于距离特征识别异常标记点,然后赋予异常标记点和正常标记点不同的搜索函数。搜索过程在设定的包围核(VOI)内进行。用所提出的ASM方法分割30个含胸壁粘连型肿块的肺区,与金标准的重叠度为93.6%。实验结果表明针对含胸壁粘连型肿块的肺区分割问题,改进的ASM算法能得到较好的分割结果,并且算法的运行时间是在临床可接受的范围内。 展开更多
关键词 胸壁粘连型肿块 主动形状模型 肺区分割 异常标记点 搜索函数
原文传递
基于胸部CT图象的肺区自动分割 被引量:4
2
作者 蒋平 张建州 +1 位作者 朱建峰 周林 《计算机工程与应用》 CSCD 北大核心 2006年第24期226-228,共3页
肺区自动分割是肺部肿瘤计算机辅助诊断系统的关键之一。文章采用多阈值和区域生长方法,先去掉背景,再去掉气管/支气管,最后对提取出来的肺区使用滚球的方法进行修补。该方法速度快、人工干预少、准确。
关键词 CT图象 肺区分割 多阈值 域生长
下载PDF
低秩和主动形状模型的肺区分割
3
作者 孙申申 田丹 +2 位作者 吴微 康雁 赵宏 《中国图象图形学报》 CSCD 北大核心 2020年第4期759-767,共9页
目的肺区分割是肺癌计算机辅助诊断系统的首要步骤。主动形状模型(active shape model,ASM)能根据训练集获得肺区形状模型,再结合待分割肺区影像自身的局部特征,进行测试影像的分割。由于主成分分析(principal component analysis,PCA)... 目的肺区分割是肺癌计算机辅助诊断系统的首要步骤。主动形状模型(active shape model,ASM)能根据训练集获得肺区形状模型,再结合待分割肺区影像自身的局部特征,进行测试影像的分割。由于主成分分析(principal component analysis,PCA)仅能去除服从高斯分布的噪声,不能处理其他类型的噪声,所以当训练集含有非高斯类型的噪声样本时,采用基于PCA的ASM无法训练出正确的形状模型,使得肺区分割不能得到正确的结果。而低秩(low rank,LR)理论的鲁棒主成分分析(robust principal component analysis,RPCA)能去除各种类型的噪声,基于此,本文提出一种将RPCA与ASM相结合的方法。方法首先对训练样本集标记点矩阵进行低秩分解,去除噪声样本对训练出的形状模型的影响。然后在ASM训练局部梯度模型时,用判断训练样本轮廓上的标记点曲率直方图的相似度来去除噪声样本。结果在训练集含噪声样本时,将基于RPCA的ASM与传统ASM(即基于PCA的ASM)分别生成的形状模型进行对比,发现基于RPCA的ASM生成的形状模型与训练集无噪声样本时传统ASM生成的形状模型更相符。在训练集含噪声样本的情况下,基于RPCA的ASM方法分割EMPIRE10数据集中的22个肺影像,与金标准的重叠度为94.5%,而基于PCA的ASM方法分割准确率仅为69.5%。结论实验结果表明,在训练样本集中有噪声样本的情况下,基于RPCA的ASM分割能得到比基于PCA的ASM更好的分割效果。 展开更多
关键词 低秩 主动形状模型 鲁棒主成分分析 肺区分割 噪声样本
原文传递
基于胸部CT图像的肺部自动分割
4
作者 赵杉 《科学技术与工程》 2008年第24期6459-6462,共4页
肺区自动分割是肺部肿瘤计算机辅助诊断系统的关键之一。文章采用多阈值和区域生长方法,先去掉背景,再去掉气管/支气管,最后对提取出来的肺区使用滚球的方法进行修补。该方法速度快、人工干预少、准确。
关键词 CT图象 肺区分割 多阈值 域生长
下载PDF
胸部CT中肺实质的提取与辅助诊断 被引量:6
5
作者 郭圣文 曾庆思 陈坚 《中国生物医学工程学报》 CAS CSCD 北大核心 2008年第5期788-791,共4页
根据临床应用需求,研究胸部高分辨率CT图像中肺实质的提取与量化诊断问题。首先讨论肺区分割与肺实质提取问题,自动分割法采用全局自适应阈值将躯干和背景分离,然后应用轮廓跟踪方法获取到肺部轮廓;人工分割则是在勾勒若干轮廓点后,应用... 根据临床应用需求,研究胸部高分辨率CT图像中肺实质的提取与量化诊断问题。首先讨论肺区分割与肺实质提取问题,自动分割法采用全局自适应阈值将躯干和背景分离,然后应用轮廓跟踪方法获取到肺部轮廓;人工分割则是在勾勒若干轮廓点后,应用Bresenham扫描线法得到连续的肺部轮廓。利用基于四邻域的背景标记扫描线方法,提取肺部实质区域。最后,根据肺气肿量化诊断标准,进行量化分析与诊断。实验证明,该方法能快速、准确地分割肺实质,实现肺气肿的量化分析与辅助诊断。 展开更多
关键词 高分辨率CT 气肿 肺区分割 辅助诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部