期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于结构联合字典的肺部LDCT图像降噪 被引量:4
1
作者 代晓婷 龚敬 聂生东 《电子学报》 EI CAS CSCD 北大核心 2018年第6期1445-1453,共9页
肺部LDCT(Low-Dose Computed Tomography)图像中噪声及条状伪影等异常显著,顶部和底部图像尤为严重.为提高整个肺部LDCT图像的质量,本文提出一种基于结构联合字典的图像降噪方法.首先,利用肺部CT图像的灰度特点,将HRCT(High Resolution ... 肺部LDCT(Low-Dose Computed Tomography)图像中噪声及条状伪影等异常显著,顶部和底部图像尤为严重.为提高整个肺部LDCT图像的质量,本文提出一种基于结构联合字典的图像降噪方法.首先,利用肺部CT图像的灰度特点,将HRCT(High Resolution Computed Tomography)图像块分类并训练,获得4类字典,通过计算原子的信息熵和HOG(Histogram of Oriented Gradient)特征,得到相应的结构字典,进而构造出结构联合字典;然后,在对肺部LDCT图像进行非局部均值滤波的基础上,将结构联合字典作为全局字典,对图像进行稀疏表示及重构,获得降噪后的图像.为验证算法有效性,选用模拟和临床两类数据进行实验,并与KSVD、AS-LNLM、BF-MCA等3种算法对比.对比发现,本文算法在去除噪声和条状伪影以及保留细节方面效果较好,特别是对序列顶层和底层图像处理优势更加明显.该方法能够显著提升整个肺部LDCT图像的质量. 展开更多
关键词 肺部低剂量ct图像 联合字典 稀疏表示 图像降噪
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部