期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于ResNet与分离注意力机制的肺部超声图像分类系统设计
1
作者
杨倩茹
郭峻氚
《中国医疗设备》
2024年第10期52-57,共6页
目的为解决传统的深度学习模型在处理具有多样性图像质量和微妙病变区域差异的肺部超声图像方面性能不佳的问题,设计一种基于残差网络(Residual Network,ResNet)与分离注意力机制的肺部超声图像分类系统。方法采用ResNet152作为基础模型...
目的为解决传统的深度学习模型在处理具有多样性图像质量和微妙病变区域差异的肺部超声图像方面性能不佳的问题,设计一种基于残差网络(Residual Network,ResNet)与分离注意力机制的肺部超声图像分类系统。方法采用ResNet152作为基础模型,结合分离注意力机制,通过对肺部超声图像进行预处理、数据增强和标准化处理,以提高模型的特征提取和分类能力。模型首先通过ResNet152进行深度特征提取,随后在各层引入分离注意力机制,增强模型对重要图像特征的关注,从而提高分类性能。结果实验结果表明,优化后模型与原始模型相比,分类准确度在A线、B线、胸腔积液和肺实变上分别提升了0.51%、0.95%、14.17%和6.29%。通过消融实验,当同时使用Mish函数和分离注意力机制时,混合模型达到了97.92%的准确度。结论本文提出的融合ResNet与分离注意力机制的肺部超声图像分类系统模型可为临床超声诊断提供较高的参考价值。
展开更多
关键词
残差网络
分离注意力机制
Mish函数
ResNet152
肺部超声图像
深度特征提取
图像
分类
超声
诊断
下载PDF
职称材料
题名
基于ResNet与分离注意力机制的肺部超声图像分类系统设计
1
作者
杨倩茹
郭峻氚
机构
新疆维吾尔自治区人民医院重症医学科
出处
《中国医疗设备》
2024年第10期52-57,共6页
基金
新疆维吾尔自治区自然科学基金(2021D01C156)
新疆维吾尔自治区人民医院院内基金(20230138)。
文摘
目的为解决传统的深度学习模型在处理具有多样性图像质量和微妙病变区域差异的肺部超声图像方面性能不佳的问题,设计一种基于残差网络(Residual Network,ResNet)与分离注意力机制的肺部超声图像分类系统。方法采用ResNet152作为基础模型,结合分离注意力机制,通过对肺部超声图像进行预处理、数据增强和标准化处理,以提高模型的特征提取和分类能力。模型首先通过ResNet152进行深度特征提取,随后在各层引入分离注意力机制,增强模型对重要图像特征的关注,从而提高分类性能。结果实验结果表明,优化后模型与原始模型相比,分类准确度在A线、B线、胸腔积液和肺实变上分别提升了0.51%、0.95%、14.17%和6.29%。通过消融实验,当同时使用Mish函数和分离注意力机制时,混合模型达到了97.92%的准确度。结论本文提出的融合ResNet与分离注意力机制的肺部超声图像分类系统模型可为临床超声诊断提供较高的参考价值。
关键词
残差网络
分离注意力机制
Mish函数
ResNet152
肺部超声图像
深度特征提取
图像
分类
超声
诊断
Keywords
residual network(ResNet)
Mish function
ResNet152
lung ultrasound images
depth feature extraction
image classification
ultrasonic diagnosis
分类号
R735.2 [医药卫生—肿瘤]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于ResNet与分离注意力机制的肺部超声图像分类系统设计
杨倩茹
郭峻氚
《中国医疗设备》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部