AIM: Reactive oxygen species (ROS) can induce carcinogenesis via DNA injury. Both enzymatic and non-enzymatic parameters participate in cell protection against harmful influence of oxidative stress. The aim of the pre...AIM: Reactive oxygen species (ROS) can induce carcinogenesis via DNA injury. Both enzymatic and non-enzymatic parameters participate in cell protection against harmful influence of oxidative stress. The aim of the present study was to assess the levels of final lipid peroxidation products like malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) in primary colorectal cancer. Moreover, we analysed the activity of main antioxidative enzymes, superoxide dismutase (Cu, Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GSSRG-R) and the level of non-enzymatic antioxidants (glutathione, vitamins C and E). METHODS: Investigations were conducted in 81 primary colorectal cancers. As a control, the same amount of sample was collected from macroscopically unchanged colon regions of the most distant location to the cancer. Homogenisation of specimens provided 10% homogenates for our evaluations. Activity of antioxidant enzymes and level of glutathione were determined by spectrophotometry. HPLC revealed levels of vitamins C and E and served as a method to detect terminal products of lipid peroxidation in colorectal cancer. RESULTS: Our studies demonstrated a statistically significant increase in the level of lipid peroxidation products (MDA-Adc. muc.-2.65±0.48 nmol/g, Adc.G3-2.15±0.44 nmol/g, clinical IV stage 4.04±0.47 nmol/g, P<0.001 and 4-HNE-Adc.muc. -0.44±0.07 nmol/g, Adc.G3-0.44±0.10 nmol/g, clinical IV stage 0.52±0.11 nmol/g, P<0.001) as well as increase of Cu,Zn-SOD (Adc.muc.-363±72 U/g, Adc.G3-318?8 U/g, clinical IV stage 421±58 U/g, P<0.001), GSH-Px (Adc.muc. -2143±623 U/g, Adc.G3-2005±591 U/g, clinical IV stage 2467±368 U/g, P<0.001) and GSSG-R (Adc.muc.-880±194 U/g, Adc.G3-795±228 U/g, dinical IV stage 951±243 U/g, P<0.001) in primary tumour comparison with normal colon (MDA-1.39±0.15 nmol/g, HNE-0.29±0.03 nmol/g, Cu, Zn-SOD-117±25 U/g, GSH-Px-1723±189 U/g, GSSG-R-625±112 U/g) especially in mucinous and G3-grade adenocarcinomas as well as clinical IV stage of colorectal cancer. We also observed a decrease of CAT activity (Adc.muc. -40±14 U/g, clinical IV stage 33±18 U/g vs 84±17 U/g, P<0.001) as well as a decreased level of reduced glutathione (clinical IV stage 150±48 nmol/g vs 167±15 nmol/g, P<0.05) and vitamins C and E (vit. C-clinical IV stage 325±92 nmol/g vs 513?4 nmol/g, P<0.001; vit. E-clinical IV stage 13.3±10.3 nmol/g vs 37.5±5.2 nmol/g). CONCLUSION: Colorectal carcinogenesis is associated with serious oxidative stress and confirms that gradual advancement of oxidative-antioxidative disorders is followed by progression of colorectal cancer.展开更多
Novel conditions have been developed for the preparation of substituted 2-aminothiophenes employing the Knoevenagel condensation followed by the Gewald reaction. The benefits of these conditions are their mildness, an...Novel conditions have been developed for the preparation of substituted 2-aminothiophenes employing the Knoevenagel condensation followed by the Gewald reaction. The benefits of these conditions are their mildness, and the ease of product isolation. Thus, the Knoevenagel condensation is run in the presence of sodium hydroxide and least amount of ethanol, (in domestic microwave) which combine to perform the roles of desiccant, and catalyst. The Gewald reaction is performed with inorganic base in Ethanol, which suppresses by product formation. This process has been employed in the synthesis of N-nucleosides as a tumor inhibitor.展开更多
Photodynamic therapy(PDT)as a non-invasive anticancer modality has received increasing attention due to its advantages of noninvasiveness,high temporospatial selectivity,simple and controllable operation,etc.PDT mainl...Photodynamic therapy(PDT)as a non-invasive anticancer modality has received increasing attention due to its advantages of noninvasiveness,high temporospatial selectivity,simple and controllable operation,etc.PDT mainly relies on the generation of toxic reactive oxygen species(ROS)by photosensitizers(PSs)under the light irradiation to cause cancer cell apoptosis and death.However,solid tumors usually exhibit an inherent hypoxic microenvironment,which greatly limits the PDT efficacy of these high oxygen-dependent conventional type II PSs.Therefore,it is of great importance to design and develop efficient type I PSs that are less oxygen-dependent for the treatment of hypoxic tumors.Herein,a new strategy for the preparation of efficient type I PSs by introducing the photoinduced electron transfer(PET)mechanism is reported.DR-NO_(2) is obtained by introducing 4-nitrobenzyl to(Z)-2-(5-(4-(diethylamino)-2-hydroxybenzylidene)-4-oxo-3-phenylthiazolidin-2-ylidene)malononitrile(DR-OH)with aggregation-induced emission(AIE)feature.The AIE feature ensures their high ROS generation efficiency in aggregate,and the PET process leads to fluorescence quenching of DR-NO_(2) to promote triplet state formation,which also promotes intramolecular charge separation and electron transfer that is conducive for type I ROS particularly superoxide radicals generation.In addition,DR-NO_(2) nanoparticles are prepared by nanoprecipitation to possess nanoscaled sizes,high cancer cell uptake,and excellent type I ROS generation ability,which results in an excellent performance in PDT ablation of MCF-7 cancer cells.This PET strategy for the development of type I PSs possesses great potential for PDT applications against hypoxic tumors.展开更多
基金Supported by Research Grant From the Polish State Committee for Scientific Research 3 PO5B 07922
文摘AIM: Reactive oxygen species (ROS) can induce carcinogenesis via DNA injury. Both enzymatic and non-enzymatic parameters participate in cell protection against harmful influence of oxidative stress. The aim of the present study was to assess the levels of final lipid peroxidation products like malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) in primary colorectal cancer. Moreover, we analysed the activity of main antioxidative enzymes, superoxide dismutase (Cu, Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GSSRG-R) and the level of non-enzymatic antioxidants (glutathione, vitamins C and E). METHODS: Investigations were conducted in 81 primary colorectal cancers. As a control, the same amount of sample was collected from macroscopically unchanged colon regions of the most distant location to the cancer. Homogenisation of specimens provided 10% homogenates for our evaluations. Activity of antioxidant enzymes and level of glutathione were determined by spectrophotometry. HPLC revealed levels of vitamins C and E and served as a method to detect terminal products of lipid peroxidation in colorectal cancer. RESULTS: Our studies demonstrated a statistically significant increase in the level of lipid peroxidation products (MDA-Adc. muc.-2.65±0.48 nmol/g, Adc.G3-2.15±0.44 nmol/g, clinical IV stage 4.04±0.47 nmol/g, P<0.001 and 4-HNE-Adc.muc. -0.44±0.07 nmol/g, Adc.G3-0.44±0.10 nmol/g, clinical IV stage 0.52±0.11 nmol/g, P<0.001) as well as increase of Cu,Zn-SOD (Adc.muc.-363±72 U/g, Adc.G3-318?8 U/g, clinical IV stage 421±58 U/g, P<0.001), GSH-Px (Adc.muc. -2143±623 U/g, Adc.G3-2005±591 U/g, clinical IV stage 2467±368 U/g, P<0.001) and GSSG-R (Adc.muc.-880±194 U/g, Adc.G3-795±228 U/g, dinical IV stage 951±243 U/g, P<0.001) in primary tumour comparison with normal colon (MDA-1.39±0.15 nmol/g, HNE-0.29±0.03 nmol/g, Cu, Zn-SOD-117±25 U/g, GSH-Px-1723±189 U/g, GSSG-R-625±112 U/g) especially in mucinous and G3-grade adenocarcinomas as well as clinical IV stage of colorectal cancer. We also observed a decrease of CAT activity (Adc.muc. -40±14 U/g, clinical IV stage 33±18 U/g vs 84±17 U/g, P<0.001) as well as a decreased level of reduced glutathione (clinical IV stage 150±48 nmol/g vs 167±15 nmol/g, P<0.05) and vitamins C and E (vit. C-clinical IV stage 325±92 nmol/g vs 513?4 nmol/g, P<0.001; vit. E-clinical IV stage 13.3±10.3 nmol/g vs 37.5±5.2 nmol/g). CONCLUSION: Colorectal carcinogenesis is associated with serious oxidative stress and confirms that gradual advancement of oxidative-antioxidative disorders is followed by progression of colorectal cancer.
文摘Novel conditions have been developed for the preparation of substituted 2-aminothiophenes employing the Knoevenagel condensation followed by the Gewald reaction. The benefits of these conditions are their mildness, and the ease of product isolation. Thus, the Knoevenagel condensation is run in the presence of sodium hydroxide and least amount of ethanol, (in domestic microwave) which combine to perform the roles of desiccant, and catalyst. The Gewald reaction is performed with inorganic base in Ethanol, which suppresses by product formation. This process has been employed in the synthesis of N-nucleosides as a tumor inhibitor.
文摘Photodynamic therapy(PDT)as a non-invasive anticancer modality has received increasing attention due to its advantages of noninvasiveness,high temporospatial selectivity,simple and controllable operation,etc.PDT mainly relies on the generation of toxic reactive oxygen species(ROS)by photosensitizers(PSs)under the light irradiation to cause cancer cell apoptosis and death.However,solid tumors usually exhibit an inherent hypoxic microenvironment,which greatly limits the PDT efficacy of these high oxygen-dependent conventional type II PSs.Therefore,it is of great importance to design and develop efficient type I PSs that are less oxygen-dependent for the treatment of hypoxic tumors.Herein,a new strategy for the preparation of efficient type I PSs by introducing the photoinduced electron transfer(PET)mechanism is reported.DR-NO_(2) is obtained by introducing 4-nitrobenzyl to(Z)-2-(5-(4-(diethylamino)-2-hydroxybenzylidene)-4-oxo-3-phenylthiazolidin-2-ylidene)malononitrile(DR-OH)with aggregation-induced emission(AIE)feature.The AIE feature ensures their high ROS generation efficiency in aggregate,and the PET process leads to fluorescence quenching of DR-NO_(2) to promote triplet state formation,which also promotes intramolecular charge separation and electron transfer that is conducive for type I ROS particularly superoxide radicals generation.In addition,DR-NO_(2) nanoparticles are prepared by nanoprecipitation to possess nanoscaled sizes,high cancer cell uptake,and excellent type I ROS generation ability,which results in an excellent performance in PDT ablation of MCF-7 cancer cells.This PET strategy for the development of type I PSs possesses great potential for PDT applications against hypoxic tumors.