Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analys...Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analysis and experiments of viscous warm pressure bulging (VWPB) of AZ31B magnesium alloy were conducted to analyze the influence of different ellipticity dies on the formability of AZ31B magnesium alloy. At the same time, based on the grid strain rule, the forming limit diagram (FLD) of VWPB of AZ31B magnesium alloy was obtained through measuring the strain of bulging specimens. The results showed that at the temperature range of viscous medium thermal stability, the viscous medium can fit the geometry variation of sheet and generate non-uniform pressure field, and as the die ellipticity increases, the difference value of non-uniform pressure reduces. Meanwhile, according to the FLD, the relationship between part complexity and ultimate deformation was investigated.展开更多
The influences of strength coefficient K, work hardening exponent n and thickness t of the overlapping sheet on bulging process are analyzed based on hardening material model. Also, bulging experiments are carried out...The influences of strength coefficient K, work hardening exponent n and thickness t of the overlapping sheet on bulging process are analyzed based on hardening material model. Also, bulging experiments are carried out by taking the aluminum alloy LF21 as formed sheet metal, and selecting overlapping sheet with different thicknesses and material properties, by which accuracy of the above analysis result is verified in the aspects of geometric shape, thickness distribution and limit bulging height. The results show that higher strength coefficient K, larger work hardening exponent n and proper thickness of the overlapping sheet are helpful to improve the formability and forming uniformity of formed sheet metal.展开更多
The toxic effects of heavy metal ions, Hg2+, Pb2+ and Cd2+ on Colpoda inflata were studied, finding that the growth of C. inflata had been inhibited signifi- cantly under different concentrations of heavy metal ion...The toxic effects of heavy metal ions, Hg2+, Pb2+ and Cd2+ on Colpoda inflata were studied, finding that the growth of C. inflata had been inhibited signifi- cantly under different concentrations of heavy metal ions. The acute toxicities of Cd2+, Pb2+ and Hg2+ to C. inflata went in the order of Hg2+, Pb2+, Cd2+. The results of joint toxicity showed that the types and magnitudes of joint actions were different at different solution compositions. The joint toxicity of Cd2+ and Pb2+ at the concentration proportion of 1:1 and toxic proportion of 1:1 were all antagonism. At the concentration proportion of 1:1, the joint toxicity of Pb2+ and Hg2+ was synergistic, and it changed from antagonism to synergistic at the toxic proportion of 1:1. The joint toxicily of Hg2. and Cd2+ at the concentration proportion of 1:1 was synergistic, and it was antagonist at toxic proportion of 1:1. At the concentration proportion of 1:1:1, the joint toxicity of Cd2+, Pb2. and Hg2+ was synergistic, and it changed from antago- nism to synergistic under toxicity proportion of 1:1:1.展开更多
Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elon...Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elongation along hoop direction and the maximum expansion ratio (MER) of the tube were obtained. The fracture surface after bursting was also analyzed. The results show that the total elongation along hoop direction and the MER value have a similar changing tendency as the testing temperature increases, which is quite different from the total elongation along axial direction. Both the total elongation along hoop direction and the MER value increase to a peak value at about 160 ℃. After that, they begin to decrease quickly until a certain rebounding temperature is reached. From the rebounding temperature, they begin to increase rapidly again. Burnt structure appears on the fracture surface when tested at temperatures higher than 420 ℃. Therefore, the forming temperature of the tested tube should be lower than 420 ℃, even though bigger formability can be achieved at higher temperature.展开更多
A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes p...A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes possessing good bonding interface have higher shear strength than that of pure aluminum and can bear both axial and radial deformation.The original interface between aluminum layer and ferrite layer was observed by scanning electron microscopy(SEM).The results show that the clad tubes with good bonding properties possess the interface in wave and straight shape.The Fe/Al clad tube was used to manufacture the T-shape by hydro-bulging.It is found that the good-bonding interface of the Fe/Al clad tube plays a dominant role in the formation of the T-shape.展开更多
This paper proposes the assumption that the flow with viscous friction is the stretch of part of the sheet that lies along the walls of a die during the process of superplastic bulging according to superplastic flow e...This paper proposes the assumption that the flow with viscous friction is the stretch of part of the sheet that lies along the walls of a die during the process of superplastic bulging according to superplastic flow equation and geometrical model of bulging of a sheet into a long trapezoid groove or truncated cone, by introducing the friction-factor P which describes the friction effect on the process. Also, the paper proposes the method of controlling thickness nonuniformity and develops the equipment which for uniform thickness of bulging, is automatically controlled with a computerl it also analyzes the important innuence of lubrication on thickness distribution of bulging materials. By the assumption, the relationship between bulging pressure and time is obtained in bulging of a sheet into the groove and cone, and p-t curve of multi-mould-cavity complicated bulging is discussed based on the analysis of single-mould-cavity bulging characteristics.展开更多
The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)o...The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)of Cu/Mo/Cu clad sheets was established successfully.The results show that the deformation of Cu and Mo layers was gradually coherent with an increase in rolling reduction and temperature and excellent interface bonding was achieved under the condition of a large rolling reduction.The development of the microstructure and texture through the thickness of Cu and Mo layers was inhomogeneous.This phenomenon can be attributed to the friction between the roller and sheet surface and the uncoordinated deformation between Cu and Mo.The tensile strength of the clad sheets increased with increasing rolling reduction and the elongation was gradually decreased.The CTE of Cu/Mo/Cu clad sheets was related to the volume fraction of Mo.The finite element method can simulate the deformation and stress distribution during the thermal expansion process.The simulation result indicates that the terminal face of the clad sheets was sunken inward.展开更多
In this paper, the flow fields of underexpanded impinging jet issued from rectangular nozzles of aspect ratio 1, 3 and 5 are numerically and experimentally studied. Two dimensional temperature and pressure distributio...In this paper, the flow fields of underexpanded impinging jet issued from rectangular nozzles of aspect ratio 1, 3 and 5 are numerically and experimentally studied. Two dimensional temperature and pressure distributions are measured by using infrared camera and the combination of a pressure scanning device and a stepping motor, respectively. The variation of the stagnation pressure on the impinging plate reveals that a hysteretic phenomenon exists during the increasing and decreasing of the pressure ratio for the aspect ratio of 3.0 and 5.0. It is also found that the nozzle of aspect ratio 1.0 caused the largest total pressure loss Pc /p0= 0.27 at the pressure ratio of Po /p0 = 6.5, where Pc is the stagnation center pressure on the wall, P0 the upstream stagnation pressure, Pb the ambient pressure. The other two nozzles showed that the pressure loss Pc / P0 =0.52 and 0.55 were achieved by the nozzles of the aspect ratio 3,0 and 5.0, respectively. The comparison between the calculations and experiments is fairly good, showing the three dimensional streamlines and structures of the shock waves in the jets. However, the hysteresis of the pressure variations observed in the experiments between the pressure ratio of 3.5 and 4.5 cannot be confirmed in the calculations.展开更多
基金Project(51575364)supported by the National Natural Science Foundation of ChinaProject(2013024014)supported by the Natural Foundation of Liaoning Province,China
文摘Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analysis and experiments of viscous warm pressure bulging (VWPB) of AZ31B magnesium alloy were conducted to analyze the influence of different ellipticity dies on the formability of AZ31B magnesium alloy. At the same time, based on the grid strain rule, the forming limit diagram (FLD) of VWPB of AZ31B magnesium alloy was obtained through measuring the strain of bulging specimens. The results showed that at the temperature range of viscous medium thermal stability, the viscous medium can fit the geometry variation of sheet and generate non-uniform pressure field, and as the die ellipticity increases, the difference value of non-uniform pressure reduces. Meanwhile, according to the FLD, the relationship between part complexity and ultimate deformation was investigated.
基金Project(51205260)supported by the National Natural Science Foundation of ChinaProject(L2012046)supported by the Liaoning Provincial Committee of Education,China
文摘The influences of strength coefficient K, work hardening exponent n and thickness t of the overlapping sheet on bulging process are analyzed based on hardening material model. Also, bulging experiments are carried out by taking the aluminum alloy LF21 as formed sheet metal, and selecting overlapping sheet with different thicknesses and material properties, by which accuracy of the above analysis result is verified in the aspects of geometric shape, thickness distribution and limit bulging height. The results show that higher strength coefficient K, larger work hardening exponent n and proper thickness of the overlapping sheet are helpful to improve the formability and forming uniformity of formed sheet metal.
基金Supported by the Hubei Key Laboratory of Mine Environmental Pollution Control and Remediationthe Hubei Provincial Department of Education(B2013063)~~
文摘The toxic effects of heavy metal ions, Hg2+, Pb2+ and Cd2+ on Colpoda inflata were studied, finding that the growth of C. inflata had been inhibited signifi- cantly under different concentrations of heavy metal ions. The acute toxicities of Cd2+, Pb2+ and Hg2+ to C. inflata went in the order of Hg2+, Pb2+, Cd2+. The results of joint toxicity showed that the types and magnitudes of joint actions were different at different solution compositions. The joint toxicity of Cd2+ and Pb2+ at the concentration proportion of 1:1 and toxic proportion of 1:1 were all antagonism. At the concentration proportion of 1:1, the joint toxicity of Pb2+ and Hg2+ was synergistic, and it changed from antagonism to synergistic at the toxic proportion of 1:1. The joint toxicily of Hg2. and Cd2+ at the concentration proportion of 1:1 was synergistic, and it was antagonist at toxic proportion of 1:1. At the concentration proportion of 1:1:1, the joint toxicity of Cd2+, Pb2. and Hg2+ was synergistic, and it changed from antago- nism to synergistic under toxicity proportion of 1:1:1.
基金Project(50805033)supported by the National Natural Science Foundation of ChinaProject(E200804)supported by the Natural Science Foundation of Heilongjiang Province of China
文摘Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elongation along hoop direction and the maximum expansion ratio (MER) of the tube were obtained. The fracture surface after bursting was also analyzed. The results show that the total elongation along hoop direction and the MER value have a similar changing tendency as the testing temperature increases, which is quite different from the total elongation along axial direction. Both the total elongation along hoop direction and the MER value increase to a peak value at about 160 ℃. After that, they begin to decrease quickly until a certain rebounding temperature is reached. From the rebounding temperature, they begin to increase rapidly again. Burnt structure appears on the fracture surface when tested at temperatures higher than 420 ℃. Therefore, the forming temperature of the tested tube should be lower than 420 ℃, even though bigger formability can be achieved at higher temperature.
基金Project(BA2006067)supported by Achievement Transitional Foundation of Jiangsu Province,China
文摘A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes possessing good bonding interface have higher shear strength than that of pure aluminum and can bear both axial and radial deformation.The original interface between aluminum layer and ferrite layer was observed by scanning electron microscopy(SEM).The results show that the clad tubes with good bonding properties possess the interface in wave and straight shape.The Fe/Al clad tube was used to manufacture the T-shape by hydro-bulging.It is found that the good-bonding interface of the Fe/Al clad tube plays a dominant role in the formation of the T-shape.
文摘This paper proposes the assumption that the flow with viscous friction is the stretch of part of the sheet that lies along the walls of a die during the process of superplastic bulging according to superplastic flow equation and geometrical model of bulging of a sheet into a long trapezoid groove or truncated cone, by introducing the friction-factor P which describes the friction effect on the process. Also, the paper proposes the method of controlling thickness nonuniformity and develops the equipment which for uniform thickness of bulging, is automatically controlled with a computerl it also analyzes the important innuence of lubrication on thickness distribution of bulging materials. By the assumption, the relationship between bulging pressure and time is obtained in bulging of a sheet into the groove and cone, and p-t curve of multi-mould-cavity complicated bulging is discussed based on the analysis of single-mould-cavity bulging characteristics.
基金financial supports from the National Natural Science Foundation of China (No.51421001)the Fundamental Research Funds for the Central Universities,China (Nos.2019CDQY CL001,2019CDCGCL204,2020CDJDPT001)the Research Project of State Key Laboratory of Vehicle NVH and Safety Technology,China (No.NVHSKL-201706)。
文摘The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)of Cu/Mo/Cu clad sheets was established successfully.The results show that the deformation of Cu and Mo layers was gradually coherent with an increase in rolling reduction and temperature and excellent interface bonding was achieved under the condition of a large rolling reduction.The development of the microstructure and texture through the thickness of Cu and Mo layers was inhomogeneous.This phenomenon can be attributed to the friction between the roller and sheet surface and the uncoordinated deformation between Cu and Mo.The tensile strength of the clad sheets increased with increasing rolling reduction and the elongation was gradually decreased.The CTE of Cu/Mo/Cu clad sheets was related to the volume fraction of Mo.The finite element method can simulate the deformation and stress distribution during the thermal expansion process.The simulation result indicates that the terminal face of the clad sheets was sunken inward.
文摘In this paper, the flow fields of underexpanded impinging jet issued from rectangular nozzles of aspect ratio 1, 3 and 5 are numerically and experimentally studied. Two dimensional temperature and pressure distributions are measured by using infrared camera and the combination of a pressure scanning device and a stepping motor, respectively. The variation of the stagnation pressure on the impinging plate reveals that a hysteretic phenomenon exists during the increasing and decreasing of the pressure ratio for the aspect ratio of 3.0 and 5.0. It is also found that the nozzle of aspect ratio 1.0 caused the largest total pressure loss Pc /p0= 0.27 at the pressure ratio of Po /p0 = 6.5, where Pc is the stagnation center pressure on the wall, P0 the upstream stagnation pressure, Pb the ambient pressure. The other two nozzles showed that the pressure loss Pc / P0 =0.52 and 0.55 were achieved by the nozzles of the aspect ratio 3,0 and 5.0, respectively. The comparison between the calculations and experiments is fairly good, showing the three dimensional streamlines and structures of the shock waves in the jets. However, the hysteresis of the pressure variations observed in the experiments between the pressure ratio of 3.5 and 4.5 cannot be confirmed in the calculations.