Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analys...Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analysis and experiments of viscous warm pressure bulging (VWPB) of AZ31B magnesium alloy were conducted to analyze the influence of different ellipticity dies on the formability of AZ31B magnesium alloy. At the same time, based on the grid strain rule, the forming limit diagram (FLD) of VWPB of AZ31B magnesium alloy was obtained through measuring the strain of bulging specimens. The results showed that at the temperature range of viscous medium thermal stability, the viscous medium can fit the geometry variation of sheet and generate non-uniform pressure field, and as the die ellipticity increases, the difference value of non-uniform pressure reduces. Meanwhile, according to the FLD, the relationship between part complexity and ultimate deformation was investigated.展开更多
The influences of strength coefficient K, work hardening exponent n and thickness t of the overlapping sheet on bulging process are analyzed based on hardening material model. Also, bulging experiments are carried out...The influences of strength coefficient K, work hardening exponent n and thickness t of the overlapping sheet on bulging process are analyzed based on hardening material model. Also, bulging experiments are carried out by taking the aluminum alloy LF21 as formed sheet metal, and selecting overlapping sheet with different thicknesses and material properties, by which accuracy of the above analysis result is verified in the aspects of geometric shape, thickness distribution and limit bulging height. The results show that higher strength coefficient K, larger work hardening exponent n and proper thickness of the overlapping sheet are helpful to improve the formability and forming uniformity of formed sheet metal.展开更多
Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elon...Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elongation along hoop direction and the maximum expansion ratio (MER) of the tube were obtained. The fracture surface after bursting was also analyzed. The results show that the total elongation along hoop direction and the MER value have a similar changing tendency as the testing temperature increases, which is quite different from the total elongation along axial direction. Both the total elongation along hoop direction and the MER value increase to a peak value at about 160 ℃. After that, they begin to decrease quickly until a certain rebounding temperature is reached. From the rebounding temperature, they begin to increase rapidly again. Burnt structure appears on the fracture surface when tested at temperatures higher than 420 ℃. Therefore, the forming temperature of the tested tube should be lower than 420 ℃, even though bigger formability can be achieved at higher temperature.展开更多
The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Fi...The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Finite element analysis models of the samples with dimensions of 180 mm×180 mm were established to analyze the friction coefficients of different interfaces. Effects of various friction coefficients on the strain distributions were studied in detail. Finally, the friction coefficients in the cold forming were determined by contrasting the strain results between the experimental data and the simulated ones.展开更多
A chemo-damage model for cracking analysis of concrete dams affected by alkali-aggregate reaction (AAR) is proposed, which combines the plastic-damage model for concrete with the AAR kinetics law. The chemo-damage mod...A chemo-damage model for cracking analysis of concrete dams affected by alkali-aggregate reaction (AAR) is proposed, which combines the plastic-damage model for concrete with the AAR kinetics law. The chemo-damage model is first verified by a stress-free AAR expansion test. The expansion deformation obtained from the simulation is in good agreement with the measurement, demonstrating that the proposed model has a sufficient accuracy to predict the expansion of AAR-affected concrete. Subsequently, the expansion deformation and cracking process of the AAR-affected Fontana gravity dam is analyzed. It shows that permanent displacements in the upstream direction and the vertical direction are gradually increased during the long-term operation period, and that their maximal values reach 1.6 and 3.6 cm, respectively. A crack is observed on the wall in the foundation drainage gallery, and extends towards the downstream face of the dam. With the further development of AAR, another crack forms on the downstream face, and then intersects with the gallery crack to penetrate the downstream side profile of the dam. The third crack occurs in the upstream side wall of the gallery and propagates a short distance towards the upstream face of the dam. The simulated cracking pattern in the dam due to AAR is similar to the in situ observation.展开更多
基金Project(51575364)supported by the National Natural Science Foundation of ChinaProject(2013024014)supported by the Natural Foundation of Liaoning Province,China
文摘Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analysis and experiments of viscous warm pressure bulging (VWPB) of AZ31B magnesium alloy were conducted to analyze the influence of different ellipticity dies on the formability of AZ31B magnesium alloy. At the same time, based on the grid strain rule, the forming limit diagram (FLD) of VWPB of AZ31B magnesium alloy was obtained through measuring the strain of bulging specimens. The results showed that at the temperature range of viscous medium thermal stability, the viscous medium can fit the geometry variation of sheet and generate non-uniform pressure field, and as the die ellipticity increases, the difference value of non-uniform pressure reduces. Meanwhile, according to the FLD, the relationship between part complexity and ultimate deformation was investigated.
基金Project(51205260)supported by the National Natural Science Foundation of ChinaProject(L2012046)supported by the Liaoning Provincial Committee of Education,China
文摘The influences of strength coefficient K, work hardening exponent n and thickness t of the overlapping sheet on bulging process are analyzed based on hardening material model. Also, bulging experiments are carried out by taking the aluminum alloy LF21 as formed sheet metal, and selecting overlapping sheet with different thicknesses and material properties, by which accuracy of the above analysis result is verified in the aspects of geometric shape, thickness distribution and limit bulging height. The results show that higher strength coefficient K, larger work hardening exponent n and proper thickness of the overlapping sheet are helpful to improve the formability and forming uniformity of formed sheet metal.
基金Project(50805033)supported by the National Natural Science Foundation of ChinaProject(E200804)supported by the Natural Science Foundation of Heilongjiang Province of China
文摘Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elongation along hoop direction and the maximum expansion ratio (MER) of the tube were obtained. The fracture surface after bursting was also analyzed. The results show that the total elongation along hoop direction and the MER value have a similar changing tendency as the testing temperature increases, which is quite different from the total elongation along axial direction. Both the total elongation along hoop direction and the MER value increase to a peak value at about 160 ℃. After that, they begin to decrease quickly until a certain rebounding temperature is reached. From the rebounding temperature, they begin to increase rapidly again. Burnt structure appears on the fracture surface when tested at temperatures higher than 420 ℃. Therefore, the forming temperature of the tested tube should be lower than 420 ℃, even though bigger formability can be achieved at higher temperature.
文摘The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Finite element analysis models of the samples with dimensions of 180 mm×180 mm were established to analyze the friction coefficients of different interfaces. Effects of various friction coefficients on the strain distributions were studied in detail. Finally, the friction coefficients in the cold forming were determined by contrasting the strain results between the experimental data and the simulated ones.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51209120, 41274106 and 40974063)
文摘A chemo-damage model for cracking analysis of concrete dams affected by alkali-aggregate reaction (AAR) is proposed, which combines the plastic-damage model for concrete with the AAR kinetics law. The chemo-damage model is first verified by a stress-free AAR expansion test. The expansion deformation obtained from the simulation is in good agreement with the measurement, demonstrating that the proposed model has a sufficient accuracy to predict the expansion of AAR-affected concrete. Subsequently, the expansion deformation and cracking process of the AAR-affected Fontana gravity dam is analyzed. It shows that permanent displacements in the upstream direction and the vertical direction are gradually increased during the long-term operation period, and that their maximal values reach 1.6 and 3.6 cm, respectively. A crack is observed on the wall in the foundation drainage gallery, and extends towards the downstream face of the dam. With the further development of AAR, another crack forms on the downstream face, and then intersects with the gallery crack to penetrate the downstream side profile of the dam. The third crack occurs in the upstream side wall of the gallery and propagates a short distance towards the upstream face of the dam. The simulated cracking pattern in the dam due to AAR is similar to the in situ observation.