The influence of forging and aging treatment on mechanical properties and microstructure of large size prestretched thick plate of 7B04 aluminium alloy was investigated through tensile test, corrosion test, transmissi...The influence of forging and aging treatment on mechanical properties and microstructure of large size prestretched thick plate of 7B04 aluminium alloy was investigated through tensile test, corrosion test, transmission electronic microcopy(TEM) and energy dispersive spectrum(EDS) analysis. The results show that the properties of plate performed extra forging (FSR technology) are much higher than those of plate without forging (CSR technology). T7451 temper is preferred to resisting corrosion than T651 temper due to a wide PFZ and discontinuous grain boundary precipitates.展开更多
Male allocare among nonhuman primates has frequently been investigated from the perspective of the caretaker. Here we examined whether male allocare relates to environmental factors or the females' energetic stress. ...Male allocare among nonhuman primates has frequently been investigated from the perspective of the caretaker. Here we examined whether male allocare relates to environmental factors or the females' energetic stress. We researched the possible differences of allocare between sexes in free-ranging black-and-white snub-nosed monkeys (Rhinopithecus bieti) in Tibet. A combination of stepwise least squares regression analysis was used to identify the influence of ecological factors (temperature, rainfall, etc.) and infant age that best account for seasonal variation of allocare. The results indicate, except for the functions of infant age, however, that male allocare is a negative function of temperature and female allocare is a positive function of temperature. Specifically, we tested the energetic stress hypothesis, which predicts that the energetic burden of females in a severe environment favour an increased rate of male allocare during the seasons of high energetic stress. We analyzed the allocare difference between high energetic stress season (Mar - Apr), when temperature was low, food availability was scarce, and infants were young, and low energetic stress season (Jun - Aug), based on data obtained during June 2003 - June 2004. Our results supported the energetic stress hypothesis because male allocare in high energetic stress season was higher than that of in low energetic stress season and female allocate was reverse. Therefore, we propose it is the energetic stress on female that make male allocare possible. Male take these interests for other aims and meet some functional hypothesis, which are addressed from the perspective of the male.展开更多
PSⅡ photochemistry and xanthophyll cycle during photoinhibition (exposed to strong light of 2 000 μmol photons·m -2 ·s -1 ) and the subsequent restoration were compared between two superhigh_yi...PSⅡ photochemistry and xanthophyll cycle during photoinhibition (exposed to strong light of 2 000 μmol photons·m -2 ·s -1 ) and the subsequent restoration were compared between two superhigh_yield rice hybrids (Liangyoupeijiu and Hua_an 3, the newly developed rice hybrids from two parental lines) and the traditional rice hybrid Shanyou 63 developed from three parental lines. The results showed that the maximal efficiency of PSⅡ photochemistry ( Fv/Fm ), the efficiency of excitation energy capture by open PSⅡ centers ( Fv′/Fm′ ), and the yield of PSⅡ electron transport ( Φ PSⅡ ) of the three rice hybrids decreased during photoinhibition. However, a greater decrease in Fv/Fm , Fv′/Fm′ , and Φ PSⅡ was observed in Shanyou 63 than in Liangyoupeijiu and Hua_an 3. At the same time, the components of xanthophyll cycle, antherxanthin (A) and zeathanxin (Z) increased rapidly while violaxanthin (V) decreased considerably. Both the rate of accumulation and the amount of A and Z in the two superhigh_yield rice hybrids were higher than that in Shanyou 63. The de_epoxidation state (DES) of xanthophyll cycle increased rapidly with the fast accumulation of A and Z, and reached the maximal level after first 30 min during photoinhibition. Of the three hybrids, the increasing rate of DES in Liangyoupeijiu and Hua_an 3 was higher than that in Shanyou 63. After photoinhibition treatment, the plant materials were transferred to a dim light (70 μmol photons·m -2 ·s -1 ) for restoration. During restoration, both chlorophyll fluorescence parameters and xanthophyll cycle relaxed gradually, but the rate and level of restoration in the two superhigh_yield rice hybrids were higher than those in Shanyou 63. Our results suggest that Liangyoupeijiu and Hua_an 3 had higher resistance to photoinhibition and higher capacity of non_radiative energy dissipation associated with xanthophyll cycle, as well as higher rate of restoration after photoinhibition, than Shanyou 63 when subjected to strong light.展开更多
Research on the stress gradient hypothesis recognizes that positive(i.e. facilitative) and negative(i.e. competitive) plant interactions change in intensity and effect relative to abiotic stress experienced on a gradi...Research on the stress gradient hypothesis recognizes that positive(i.e. facilitative) and negative(i.e. competitive) plant interactions change in intensity and effect relative to abiotic stress experienced on a gradient. Motivated by observations of alpine treeline ecotones, we suggest that this switch in interaction could operate along a gradient of relative size of individual plants. We propose that as neighbors increase in size relative to a focal plant they improve the environment for that plant up to a critical point. After this critical point is surpassed, however, increasing relative size of neighbors will degrade the environment such that the net interaction intensity becomes negative. We developed a conceptual(not site or species specific) individual based model to simulate a single species with recruitment, growth, and mortality dependent on the environment mediated by the relative size of neighbors. Growth and size form a feedback. Simulation results show that the size gradient model produces metrics similar to that of a stress gradient model. Visualizations reveal that the size gradient model produces spatial patterns that are similar to the complex ones observed at alpine treelines. Size-mediated interaction could be a mechanism of the stress gradient hypothesis or it could operate independent of abiotic stress.展开更多
Drought can affect the growth and soil enzyme activities of invasive alien plants(IAPs).It is imperative to evaluate the competitive advantage of IAPs compared with that of the native species and the activities of soi...Drought can affect the growth and soil enzyme activities of invasive alien plants(IAPs).It is imperative to evaluate the competitive advantage of IAPs compared with that of the native species and the activities of soil enzymes under drought.This study aimed to evaluate the competitive advantage of the IAP Amaranthus spinosus that originated from tropical America compared with the native Chinese species A.tricolor and the activities of soil enzymes under drought.A competitive co-culture of A.spinosus and A.tricolor was established using a planting basin experiment.The two species were treated with different levels of drought,i.e.(i)the control;(ii)a light level of drought and(iii)a heavy level of drought.The functional traits,osmotic adjustment and the activities of antioxidant enzymes of the two species,as well as soil pH and electrical conductivity,contents of soil microbial biomass carbon and the activities of soil enzymes were determined.The relative competition intensity and relative dominance of A.spinosus were greater than those of A.tricolor under drought.Drought may provide an advantage to the competitive advantage of A.spinosus.Soil water-soluble salt content and sucrose hydrolytic power of A.spinosus were greater than those of A.tricolor under drought.The ability of A.spinosus to grow in soil with higher levels of water-soluble salt contents and sucrose hydrolytic power under drought may aid in its acquisition and utilization of nutrients.展开更多
基金Project(2003AA331100) supported by Commission of Science Technology and Industry for National Defence
文摘The influence of forging and aging treatment on mechanical properties and microstructure of large size prestretched thick plate of 7B04 aluminium alloy was investigated through tensile test, corrosion test, transmission electronic microcopy(TEM) and energy dispersive spectrum(EDS) analysis. The results show that the properties of plate performed extra forging (FSR technology) are much higher than those of plate without forging (CSR technology). T7451 temper is preferred to resisting corrosion than T651 temper due to a wide PFZ and discontinuous grain boundary precipitates.
基金The Innovation Project of the Chinese Academy of Sciences(grants KSCX2-1-03,KSCX2-1-09)the National Natural Science Foundation of China(30870375)~~
文摘Male allocare among nonhuman primates has frequently been investigated from the perspective of the caretaker. Here we examined whether male allocare relates to environmental factors or the females' energetic stress. We researched the possible differences of allocare between sexes in free-ranging black-and-white snub-nosed monkeys (Rhinopithecus bieti) in Tibet. A combination of stepwise least squares regression analysis was used to identify the influence of ecological factors (temperature, rainfall, etc.) and infant age that best account for seasonal variation of allocare. The results indicate, except for the functions of infant age, however, that male allocare is a negative function of temperature and female allocare is a positive function of temperature. Specifically, we tested the energetic stress hypothesis, which predicts that the energetic burden of females in a severe environment favour an increased rate of male allocare during the seasons of high energetic stress. We analyzed the allocare difference between high energetic stress season (Mar - Apr), when temperature was low, food availability was scarce, and infants were young, and low energetic stress season (Jun - Aug), based on data obtained during June 2003 - June 2004. Our results supported the energetic stress hypothesis because male allocare in high energetic stress season was higher than that of in low energetic stress season and female allocate was reverse. Therefore, we propose it is the energetic stress on female that make male allocare possible. Male take these interests for other aims and meet some functional hypothesis, which are addressed from the perspective of the male.
文摘PSⅡ photochemistry and xanthophyll cycle during photoinhibition (exposed to strong light of 2 000 μmol photons·m -2 ·s -1 ) and the subsequent restoration were compared between two superhigh_yield rice hybrids (Liangyoupeijiu and Hua_an 3, the newly developed rice hybrids from two parental lines) and the traditional rice hybrid Shanyou 63 developed from three parental lines. The results showed that the maximal efficiency of PSⅡ photochemistry ( Fv/Fm ), the efficiency of excitation energy capture by open PSⅡ centers ( Fv′/Fm′ ), and the yield of PSⅡ electron transport ( Φ PSⅡ ) of the three rice hybrids decreased during photoinhibition. However, a greater decrease in Fv/Fm , Fv′/Fm′ , and Φ PSⅡ was observed in Shanyou 63 than in Liangyoupeijiu and Hua_an 3. At the same time, the components of xanthophyll cycle, antherxanthin (A) and zeathanxin (Z) increased rapidly while violaxanthin (V) decreased considerably. Both the rate of accumulation and the amount of A and Z in the two superhigh_yield rice hybrids were higher than that in Shanyou 63. The de_epoxidation state (DES) of xanthophyll cycle increased rapidly with the fast accumulation of A and Z, and reached the maximal level after first 30 min during photoinhibition. Of the three hybrids, the increasing rate of DES in Liangyoupeijiu and Hua_an 3 was higher than that in Shanyou 63. After photoinhibition treatment, the plant materials were transferred to a dim light (70 μmol photons·m -2 ·s -1 ) for restoration. During restoration, both chlorophyll fluorescence parameters and xanthophyll cycle relaxed gradually, but the rate and level of restoration in the two superhigh_yield rice hybrids were higher than those in Shanyou 63. Our results suggest that Liangyoupeijiu and Hua_an 3 had higher resistance to photoinhibition and higher capacity of non_radiative energy dissipation associated with xanthophyll cycle, as well as higher rate of restoration after photoinhibition, than Shanyou 63 when subjected to strong light.
基金based upon work while an author served at the National Science Foundation(USA)
文摘Research on the stress gradient hypothesis recognizes that positive(i.e. facilitative) and negative(i.e. competitive) plant interactions change in intensity and effect relative to abiotic stress experienced on a gradient. Motivated by observations of alpine treeline ecotones, we suggest that this switch in interaction could operate along a gradient of relative size of individual plants. We propose that as neighbors increase in size relative to a focal plant they improve the environment for that plant up to a critical point. After this critical point is surpassed, however, increasing relative size of neighbors will degrade the environment such that the net interaction intensity becomes negative. We developed a conceptual(not site or species specific) individual based model to simulate a single species with recruitment, growth, and mortality dependent on the environment mediated by the relative size of neighbors. Growth and size form a feedback. Simulation results show that the size gradient model produces metrics similar to that of a stress gradient model. Visualizations reveal that the size gradient model produces spatial patterns that are similar to the complex ones observed at alpine treelines. Size-mediated interaction could be a mechanism of the stress gradient hypothesis or it could operate independent of abiotic stress.
基金This study was funded by Opening Project of State Key Laboratory of Tree Genetics and Breeding,Northeast Forestry University,China(K2020205)National Natural Science Foundation of China(32071521)+1 种基金Key Research and Development Program of Changzhou,China(CJ20200013)Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment.
文摘Drought can affect the growth and soil enzyme activities of invasive alien plants(IAPs).It is imperative to evaluate the competitive advantage of IAPs compared with that of the native species and the activities of soil enzymes under drought.This study aimed to evaluate the competitive advantage of the IAP Amaranthus spinosus that originated from tropical America compared with the native Chinese species A.tricolor and the activities of soil enzymes under drought.A competitive co-culture of A.spinosus and A.tricolor was established using a planting basin experiment.The two species were treated with different levels of drought,i.e.(i)the control;(ii)a light level of drought and(iii)a heavy level of drought.The functional traits,osmotic adjustment and the activities of antioxidant enzymes of the two species,as well as soil pH and electrical conductivity,contents of soil microbial biomass carbon and the activities of soil enzymes were determined.The relative competition intensity and relative dominance of A.spinosus were greater than those of A.tricolor under drought.Drought may provide an advantage to the competitive advantage of A.spinosus.Soil water-soluble salt content and sucrose hydrolytic power of A.spinosus were greater than those of A.tricolor under drought.The ability of A.spinosus to grow in soil with higher levels of water-soluble salt contents and sucrose hydrolytic power under drought may aid in its acquisition and utilization of nutrients.