AIM: To investigate the clinical presentations associated with bile acid synthesis defects and to describe identification of individual disorders and diagnostic pitfalls. METHODS: We describe semiquantitative determin...AIM: To investigate the clinical presentations associated with bile acid synthesis defects and to describe identification of individual disorders and diagnostic pitfalls. METHODS: We describe semiquantitative determination of 16 urinary bile acid metabolites by electrospray ionization-tandem mass spectrometry. Sample preparation was performed by solid-phase extraction. The total analysis time was 2 min per sample. We determined bile acid metabolites in 363 patients with suspected defects in bile acid metabolism. RESULTS: Abnormal bile acid metabolites were found in 36 patients. Two patients had bile acid synthesis defects but presented with atypical presentations. In 2 other patients who were later shown to be affected by biliary atresia and cystic fibrosis the profile of bile acid metabolites was initially suggestive of a bile acid synthesis defect. Three adult patients suffered from cerebrotendinous xanthomatosis. Nineteen patients had peroxisomal disorders, and 10 patients had cholestatic hepatopathy of other cause. CONCLUSION: Screening for urinary cholanoids should be done in every infant with cholestatic hepatopathy as well as in children with progressive neurological disease to provide specific therapy.展开更多
Cholate-CoA ligase (,EEL) and bile acid-CoA: amino acid N-acyltransferase (BAAT) sequentially mediate bile-acid amidation. Defects can cause intrahepatic cholestasis. Distinction has required gene sequencing. We ...Cholate-CoA ligase (,EEL) and bile acid-CoA: amino acid N-acyltransferase (BAAT) sequentially mediate bile-acid amidation. Defects can cause intrahepatic cholestasis. Distinction has required gene sequencing. We assessed potential clinical utility of immunostaining of liver for CCL and BAAT. Using commercially available antibodies against BAAT and CCL, we immunostained liver from an infant with jaundice, deficiency of amidated bile acids, and transcription-terminating mutation in BAAT. CCL was normally expressed. BAAT expression was not de- tected. Immunostaining may facilitate diagnosis in bile- acid amidation defects.展开更多
基金Supported by Grants from the United States National Institutes of Health (GM069338 and HL20948) awarded to Russell DW
文摘AIM: To investigate the clinical presentations associated with bile acid synthesis defects and to describe identification of individual disorders and diagnostic pitfalls. METHODS: We describe semiquantitative determination of 16 urinary bile acid metabolites by electrospray ionization-tandem mass spectrometry. Sample preparation was performed by solid-phase extraction. The total analysis time was 2 min per sample. We determined bile acid metabolites in 363 patients with suspected defects in bile acid metabolism. RESULTS: Abnormal bile acid metabolites were found in 36 patients. Two patients had bile acid synthesis defects but presented with atypical presentations. In 2 other patients who were later shown to be affected by biliary atresia and cystic fibrosis the profile of bile acid metabolites was initially suggestive of a bile acid synthesis defect. Three adult patients suffered from cerebrotendinous xanthomatosis. Nineteen patients had peroxisomal disorders, and 10 patients had cholestatic hepatopathy of other cause. CONCLUSION: Screening for urinary cholanoids should be done in every infant with cholestatic hepatopathy as well as in children with progressive neurological disease to provide specific therapy.
基金Supported by Great Ormond Street Hospital Children’s Charity, to Clayton PTNational Institutes of HealthGrant R01 DK58214, to Bull LN
文摘Cholate-CoA ligase (,EEL) and bile acid-CoA: amino acid N-acyltransferase (BAAT) sequentially mediate bile-acid amidation. Defects can cause intrahepatic cholestasis. Distinction has required gene sequencing. We assessed potential clinical utility of immunostaining of liver for CCL and BAAT. Using commercially available antibodies against BAAT and CCL, we immunostained liver from an infant with jaundice, deficiency of amidated bile acids, and transcription-terminating mutation in BAAT. CCL was normally expressed. BAAT expression was not de- tected. Immunostaining may facilitate diagnosis in bile- acid amidation defects.